首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species (ROS) are considered a key factor in mitochondrial dysfunction associated with brain aging process. Mitochondrial respiration is an important source of ROS and hence a potential contributor to brain functional changes with aging. In this study, we examined the effect of aging on cytochrome c oxidase activity and other bioenergetic processes such as oxygen consumption, membrane potential and ROS production in rat brain mitochondria. We found a significant age-dependent decline in the cytochrome c oxidase activity which was associated with parallel changes in state 3 respiration, membrane potential and with an increase in H2O2 generation. The cytochrome aa3 content was practically unchanged in mitochondria from young and aged animals. The age-dependent decline of cytochrome c oxidase activity could be restored, in situ, to the level of young animals, by exogenously added cardiolipin. In addition, exposure of brain mitochondria to peroxidized cardiolipin resulted in an inactivation of this enzyme complex. It is suggested that oxidation/depletion of cardiolipin could be responsible, at least in part, for the decline of cytochrome c oxidase and mitochondrial dysfunction in brain aging. Melatonin treatment of old animals largely prevented the age-associated alterations of mitochondrial bioenergetic parameters. These results may prove useful in elucidating the molecular mechanisms underlying mitochondrial dysfunction associated with brain aging process, and may have implications in etiopathology of age-associated neurodegenerative disorders and in the development of potential treatment strategies.  相似文献   

2.
Extracellular and intraneuronal accumulation of amyloid-beta aggregates has been demonstrated to be involved in the pathogenesis of Alzheimer's disease (AD). However, the precise mechanism of amyloid-beta neurotoxicity is not completely understood. Previous studies suggest that binding of amyloid-beta to a number of macromolecules has deleterious effects on cellular functions. Mitochondria were found to be the target for amyloid-beta, and mitochondrial dysfunction is well documented in AD. In the present study we have shown for the first time that Aβ 1-42 bound to a peptide comprising the amino-terminal region of cytochrome c oxidase subunit 1. Phage clone, selected after screening of a human brain cDNA library expressed on M13 phage and bearing a 61 amino acid fragment of cytochrome c oxidase subunit 1, bound to Aβ 1-42 in ELISA as well as to Aβ aggregates present in AD brain. Aβ 1-42 and cytochrome c oxidase subunit 1 co-immunoprecipitated from mitochondrial fraction of differentiated human neuroblastoma cells. Likewise, molecular dynamics simulation of the cytochrome c oxidase subunit 1 and the Aβ 1-42 peptide complex resulted in a reliable helix-helix interaction, supporting the experimental results. The interaction between Aβ 1-42 and cytochrome c oxidase subunit 1 may explain, in part, the diminished enzymatic activity of respiratory chain complex IV and subsequent neuronal metabolic dysfunction observed in AD.  相似文献   

3.
Mitochondria are essential organelles with multiple functions, especially in energy metabolism. Recently, an increasing number of data has highlighted the role of mitochondria for cellular differentiation processes. Metabolic differences between stem cells and mature derivatives require an adaptation of mitochondrial function during differentiation. In this study we investigated alterations of the mitochondrial phenotype of human mesenchymal stem cells undergoing adipogenic differentiation. Maturation of adipocytes is accompanied by mitochondrial biogenesis and an increase of oxidative metabolism. Adaptation of the mt phenotype during differentiation is reflected by changes in the distribution of the mitochondrial network as well as marked alterations of gene expression and organization of the oxidative phosphorylation system (OXPHOS). Distinct differences in the supramolecular organization forms of cytochrome c oxidase (COX) were detected using 2D blue native (BN)-PAGE analysis. Most remarkably we observed a significant increase in the abundance of OXPHOS supercomplexes in mitochondria, emphasizing the change of the mitochondrial phenotype during adipogenic differentiation.  相似文献   

4.
Biochemical micromethods were used for the investigation of changes in mitochondrial oxidative phosphorylation associated with cytochrome c oxidase deficiency in brain cortex from Mo(vbr) (mottled viable brindled) mice, an animal model of Menkes' copper deficiency syndrome. Enzymatic analysis of cortex homogenates from Mo(vbr) mice showed an approximately twofold decrease in cytochrome c oxidase and a 1.4-fold decrease in NADH:cytochrome c reductase activities as compared with controls. Assessment of mitochondrial respiratory function was performed using digitonin-treated homogenates of the cortex, which exhibited the main characteristics of isolated brain mitochondria. Despite the substantial changes in respiratory chain enzyme activities, no significant differences were found in maximal pyruvate or succinate oxidation rates of brain cortex homogenates from Mo(vbr) and control mice. Inhibitor titrations were used to determine flux control coefficients of NADH:CoQ oxidoreductase and cytochrome c oxidase on the rate of mitochondrial respiration. Application of amobarbital to titrate the activity of NADH:CoQ oxidoreductase showed very similar flux control coefficients for control and mutant animals. Alternately, titration of respiration with azide revealed for Mo(vbr) mice significantly sharper inhibition curves than for controls, indicating a more than twofold elevated flux control coefficient of cytochrome c oxidase. Owing to the reserve capacity of respiratory chain enzymes, the reported changes in activities do not seem to affect whole-brain high-energy phosphates, as observed in a previous study using 31P NMR.  相似文献   

5.
6.
Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Aβ) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Aβ1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Aβ overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.  相似文献   

7.
The 13 peptides encoded by vertebrate mitochondrial DNA (mtDNA) are essential subunits of oxidative phosphorylation (OXPHOS) enzymes. These genes normally experience purifying selection and also coevolve with nuclear-encoded subunits of OXPHOS complexes. However, the role of positive selection on mtDNA evolution is still unclear, as most examples of intergenomic coevolution appear to be the result of compensation by nuclear-encoded genes for mildly deleterious mtDNA mutations, and not simultaneous positive selection in both genomes. Organisms that have experienced strong selective pressures to increase aerobic capacity or adapt to changes in thermal environment may be better candidates in which to examine the impact of positively selected changes on mtDNA evolution. The tuna (suborder Scombroidei, family Scombridae) and billfish (suborder Scombroidei, families Xiphiidae and Istiophoridae) are highly aerobic fish with multiple specializations in muscle energetics, including a high mitochondrial content and regional endothermy. We examined the role of positively selected mtDNA substitutions in the production of these unique phenotypes. Focusing on a catalytic subunit of cytochrome c oxidase (COX II), we found that the rate ratio of nonsynonymous (d(N); amino acid changing)-to-synonymous (d(S); silent) substitutions was not increased in lineages leading to the tuna but was significantly increased in the lineage preceding the billfish. Furthermore, there are a number of individual positively selected sites that, when mapped onto the COX crystal structure, appear to interact with other COX subunits and may affect OXPHOS function and regulation in billfish.  相似文献   

8.
The effect of short-term fasting and thirst, prolonged fasting and hypoxic hypoxia upon the activity of cytochrome oxidase was studied in mitochondrial fractions obtained from the brain and the liver. The investigation was carried out in two groups of rats, 5 and 60 days old. a) The activity of cytochrome oxidase in mitochondria isolated from the brain cortex, subcortical regions and the medulla oblongata rises, while the changes in liver mitochondrial fractions are reverse. b) A significant increase of mitochondrial cytochrome oxidase was found in 5-day-old rats after both types of fasting and hypoxia in all regions of the brain, as well as in the liver. c) The cytochrome oxidase activity in brain and liver mitochondria of 60-day-old rats was not affected appreciably after 24 h nutritional deprivation, with the exception of a significant rise of activity in the medulla oblongata. Prolonged fasting and hypoxia again markedly increased the activity of this enzyme in all regions of the brain and in the liver.  相似文献   

9.
Copper deficiency has been reported to be associated withdecreased cytochrome c oxidase activity, whichin turn may be responsible for theobserved mitochondrial impairment and cardiac failure. We isolatedmito-chondriafrom hearts of copper-deficient rats: cytochrome c oxidase activity was found to be lowerthan incopper-adequate mitochondria. The residual activity paralleled coppercontent of mitochondria and also corresponded with the heme amount associated with cytochromeaa3. In fact, lower absorption in thea-band region of cytochrome aa3 was foundfor copper-deficient rat heart mitochondria. Gel electrophoresisof protein extractedfrom mitochondrial membranes allowed measurements of protein content of thecomplexes ofoxidative phosphorylation, revealing a lower content of complex IV protein incopper-deficientrat heart mitochondria. The alterations caused by copper deficiency appear to bespecific forcytochrome c oxidase. Changes were not observed for F 0 F 1 ATP synthase activity,for heme contents ofcytochrome c and b, and for protein contents of complexes I, III and V.The present study demonstrates that the alteration of cytochrome c oxidase activityobserved in copper deficiency is due to a diminishedcontent of assembled protein and that shortnessof copper impairs heme insertion into cytochrome c oxidase.  相似文献   

10.
BACKGROUND: The reactions between Complex IV (cytochrome c oxidase, CcOX) and nitric oxide (NO) were described in the early 60's. The perception, however, that NO could be responsible for physiological or pathological effects, including those on mitochondria, lags behind the 80's, when the identity of the endothelial derived relaxing factor (EDRF) and NO synthesis by the NO synthases were discovered. NO controls mitochondrial respiration, and cytotoxic as well as cytoprotective effects have been described. The depression of OXPHOS ATP synthesis has been observed, attributed to the inhibition of mitochondrial Complex I and IV particularly, found responsible of major effects. SCOPE OF REVIEW: The review is focused on CcOX and NO with some hints about pathophysiological implications. The reactions of interest are reviewed, with special attention to the molecular mechanisms underlying the effects of NO observed on cytochrome c oxidase, particularly during turnover with oxygen and reductants. MAJOR CONCLUSIONS AND GENERAL SIGNIFICANCE: The NO inhibition of CcOX is rapid and reversible and may occur in competition with oxygen. Inhibition takes place following two pathways leading to formation of either a relatively stable nitrosyl-derivative (CcOX-NO) of the enzyme reduced, or a more labile nitrite-derivative (CcOX-NO(2)(-)) of the enzyme oxidized, and during turnover. The pathway that prevails depends on the turnover conditions and concentration of NO and physiological substrates, cytochrome c and O(2). All evidence suggests that these parameters are crucial in determining the CcOX vs NO reaction pathway prevailing in vivo, with interesting physiological and pathological consequences for cells.  相似文献   

11.
Mitochondrial dysfunction and brain metabolic alteration are early neurofunctional aspects in Alzheimer's disease (AD). Regional brain metabolism was analyzed by cytochrome c oxidase (COX) histochemistry in PS1-A246E mouse mutants, a model of autosomal dominant AD overexpressing beta-amyloid (Aβ) peptide without amyloidosis or cell degeneration. Immunohistochemical samples were analyzed on adjacent sections for regional Aβ1-42 levels, as well as DNA oxidative damage with 8-hydroxy-2-deoxyguanosine (8-OHdG). COX activity increased in the basal forebrain nuclear complex, specific parts of the amygdala and hippocampus, as well as in striatum and connected regions. On the contrary, a hypometabolism was observed in midline thalamic, interpeduncular, and pedonculopontine nuclei. The integration of these regions in circuitries subserving emotions, arousal, and cognitive functions may explain why neurochemical alterations in specific brain regions were linearly correlated with psychomotor slowing and disinhibition previously reported in the mutant. As the PS1-A246E model appears to mimick prodromal AD, the results support the existence of mitochondrial abnormalities prior to AD-related cognitive deficits. However, since affected PS1-A246E brain regions were not primarily those altered in AD-associated histopathological features and did not systematically display either Aβ overexpression or higher 8-OHdG immunolabelling, the hypermetabolism observed seems to comprise a compensatory reaction to early mitochondrial abnormalities; furthermore, neuronal synaptic function should be considered as particularly relevant in COX activity changes.  相似文献   

12.
Mitochondria are responsible for the synthesis of both iron-sulfur clusters and heme, but the potential connection between the two major iron-consuming pathways is unknown. Here, we have shown that mutants in the yeast mitochondrial iron-sulfur cluster (ISC) assembly machinery displayed reduced cytochrome levels and diminished activity of the heme-containing cytochrome c oxidase, in addition to iron-sulfur protein defects. In contrast, mutants in components of the mitochondrial ISC export machinery, which are specifically required for maturation of cytosolic iron-sulfur proteins, were not decreased in heme synthesis or cytochrome levels. Heme synthesis does not involve the function of mitochondrial ISC components, because immunological depletion of various ISC proteins from mitochondrial extracts did not affect the formation and amounts of heme. The heme synthesis defects of ISC mutants were found in vivo in isolated mitochondria and in mitochondrial detergent extracts and were confined to an inhibition of ferrochelatase, the enzyme catalyzing the insertion of iron into protoporphyrin IX. In support of these findings, immunopurification of ferrochelatase from ISC mutants restored its activity to wild-type levels. We conclude that the reversible inhibition of ferrochelatase is the molecular reason for the heme deficiency in ISC assembly mutants. This inhibitory mechanism may be used for regulation of iron distribution between the two iron-consuming processes.  相似文献   

13.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

14.
The Arrhenius plots of electron transport activity in cytochrome c oxidase reconstituted with well-defined phospholipids have been shown to display a change in slope at 20--25 degrees C regardless of the chemical nature of the incorporated lipid. In native membranous cytochrome c oxidase, the discontinuity in Arrhenius activity plot occurred at 16--18 degrees C. These temperature breaks were found to correlate with changes in spin-label mobilities but not with the bulk lipid transition observed by differential scanning calorimetry. Temperature-dependent reciprocal equilibrium between the immobilized and fluid pools is demonstrated. It is suggested that the changes in kinetic and spin-label spectral characteristics in cytochrome c oxidase membranes are related very likely to a lipid-protein interaction prompted by a thermally induced change in the physical state of the lipids that does not involve a gel to liquid crystalline transition.  相似文献   

15.
Alzheimer's disease (AD) brain reveals high rates of oxygen consumption and oxidative stress, altered antioxidant defences, increased oxidized polyunsaturated fatty acids, and elevated transition metal ions. Mitochondrial dysfunction in AD is perhaps relevant to these observations, as such may contribute to neurodegenerative cell death through the formation of reactive oxygen species (ROS) and the release of molecules that initiate programmed cell death pathways. In this study, we analyzed the effects of beta-amyloid peptide (Abeta) on human teratocarcinoma (NT2) cells expressing endogenous mitochondrial DNA (mtDNA), mtDNA from AD subjects (AD cybrids), and mtDNA from age-matched control subjects (control cybrids). In addition to finding reduced cytochrome oxidase activity, elevated ROS, and reduced ATP levels in the AD cybrids, when these cell lines were exposed to Abeta 1-40 we observed excessive mitochondrial membrane potential depolarization, increased cytoplasmic cytochrome c, and elevated caspase-3 activity. When exposed to Abeta, events associated with programmed cell death are activated in AD NT2 cybrids to a greater extent than they are in control cybrids or the native NT2 cell line, suggesting a role for mtDNA-derived mitochondrial dysfunction in AD degeneration.  相似文献   

16.
Mitochondrial dysfunction is a prominent feature of Alzheimer’s disease (AD) and this can be contributed by aberrant metabolic enzyme function. But, the mechanism causing this enzymatic impairment is unclear. Amyloid precursor protein (APP) is known to be alternatively spliced to produce three major isoforms in the brain (APP695, APP751, APP770). Both APP770 and APP751 contain the Kunitz Protease Inhibitory (KPI) domain, but the former also contain an extra OX-2 domain. APP695 on the other hand, lacks both domains. In AD, up-regulation of the KPI-containing APP isoforms has been reported. But the functional contribution of this elevation is unclear. In the present study, we have expressed and compared the effect of the non-KPI containing APP695 and the KPI-containing APP751 on mitochondrial function. We found that the KPI-containing APP751 significantly decreased the expression of three major mitochondrial metabolic enzymes; citrate synthase, succinate dehydrogenase and cytochrome c oxidase (COX IV). This reduction lowers the NAD+/NADH ratio, COX IV activity and mitochondrial membrane potential. Overall, this study demonstrated that up-regulation of the KPI-containing APP isoforms is likely to contribute to the impairment of metabolic enzymes and mitochondrial function in AD.  相似文献   

17.
This study was designed to elucidate harmful effects of acetylcholine on myocardial mitochondrial electron transport activity. Rats were cervically dislocated 3 h and 6 h after oral administration of pyridostigmine, an acetylcholinesterase inhibitor. The myocardial mitochondrial electron-transport activity (NADH-cytochrome c reductase, succinate-cytochrome c reductase and cytochrome c oxidase), and myocardial acetylcholine and norepinephrine concentrations were measured. Activities of cytochrome c oxidase were significantly decreased in the pyridostigmine-3h and the pyridostigmine-6h groups compared with untreated rats. Activity of NADH-cytochrome c reductase was significantly decreased 6 h after administration. No significant changes were observed in those of succinate-cytochrome c reductase among all groups. Pyridostigmine increased significantly myocardial acetylcholine concentration, however, no significant changes of myocardial norepinephrine concentrations were observed among all groups. It is indicated that these mitochondrial injuries might be dependent on an increase in acetylcholine level and independent of norepinephrine.  相似文献   

18.
Alzheimer's disease (AD) is the most common progressive neurodegenerative disease. Today, AD affects millions of people worldwide and the number of AD cases will increase with increased life expectancy. The AD brain is marked by severe neurodegeneration like the loss of synapses and neurons, atrophy and depletion of neurotransmitter systems in the hippocampus and cerebral cortex. Recent findings suggest that these pathological changes are causally induced by mitochondrial dysfunction and increased oxidative stress. These changes are not only observed in the brain of AD patients but also in the periphery. In this review, we discuss the potential role of elevated apoptosis, increased oxidative stress and especially mitochondrial dysfunction as peripheral markers for the detection of AD in blood cells especially in lymphocytes. We discuss recent not otherwise published findings on the level of complex activities of the respiratory chain comprising mitochondrial respiration and the mitochondrial membrane potential (MMP). We obtained decreased basal MMP levels in lymphocytes from AD patients as well as enhanced sensitivity to different complex inhibitors of the respiratory chain. These changes are in line with mitochondrial defects obtained in AD cell and animal models, and in post-mortem AD tissue. Importantly, these mitochondrial alterations where not only found in AD patients but also in patients with mild cognitive impairment (MCI). These new findings point to a relevance of mitochondrial function as an early peripheral marker for the detection of AD and MCI.  相似文献   

19.
Low temperature (77 degrees K) absorption spectra of nonequilibrium states of cytochrome c oxidase produced by reduction of oxidases form protein by thermolysed electrons at 77 degrees K was studied. During reduction of cytochrome oxidase water-glycerol solution by thermolysed electrons at 77 degrees K a nonequilibrium reduced protein is formed. Low temperature (77 degrees K) absorption spectra of the nonequilibrium cytochrome oxidase differs from those reduced by ditionite. It was shown that the oxidation state of cytochrome a3 or addition of cytochrom c have no influence on these spectral changes. It is assumed, that the observed effects are conditioned by structural differences of reduced and oxidased cytochrome oxidase active center. Similar spectral changes were observed for cytochrome oxidase, bound to the mitochondrial membrane. At temperature increasing the low temperature reduced protein is relaxed to a corresponding equilibrium state. The spectral properties of bacterial cytochrome oxidase M. lysodeicticus do not depend on the way of reduction (by dytionite or thermolysed electrons at 77 degrees K).  相似文献   

20.
The effect of depletion of reduced glutathione (GSH) on brain mitochondrial function and N-acetyl aspartate concentration has been investigated. Using pre-weanling rats, GSH was depleted by L-buthionine sulfoximine administration for up to 10 days. In both whole brain homogenates and purified mitochondrial preparations complex IV (cytochrome c oxidase) activity was decreased, by up to 27%, as a result of this treatment. In addition, after 10 days of GSH depletion, citrate synthase activity was significantly reduced, by 18%, in the purified mitochondrial preparations, but not in whole brain homogenates, suggesting increased leakiness of the mitochondrial membrane. The whole brain N-acetyl aspartate concentration was also significantly depleted at this time point, by 11%. It is concluded that brain GSH is important for the maintenance of optimum mitochondrial function and that prolonged depletion leads also to loss of neuronal integrity. The relevance of these findings to Parkinson's disease and the inborn errors of glutathione mtabolism are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号