首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Spectroscopic evidence is presented which demonstrates the binding of cyanide to the ferric cytochrome c' from Chromatium vinosum. The cytochrome was shown to bind one equivalent of cyanide with an equilibrium constant of 2.1 X 10(4) at pH 7.0 and 25 degrees C. This finding represents the first observation of the binding of an anionic ligand to the heme iron in a ferric cytochrome c'. These results suggest that the binding site of the ferric Chromatium cytochrome c' may be significantly more accessible than previously indicated.  相似文献   

2.
Carbon monoxide binding to Chromatium vinosum ferrocytochrome c' has been studied by high-precision equilibrium methods. In contrast to the CO binding properties of Rhodospirillum molischianum cytochrome c' [Doyle, M. L., Weber, P. C., & Gill, S. J. (1985) Biochemistry 24, 1987-1991], CO binding to C. vinosum cytochrome c' is found to be unusual in the following ways. The binding curve is found to be cooperative with typical Hill coefficients equal to 1.25. The shape of the binding curve is asymmetrical. The heat of CO ligation is measured by two independent methods, both of which yield large endothermic values of approximately 10 kcal [mol of CO(aq)]-1. The overall affinity for CO increases as the concentration of cytochrome c' decreases. These observations suggest the CO binding properties of C. vinosum cytochrome c' are complicated by CO-linked association-dissociation processes. Further investigation by gel filtration chromatography shows that at micromolar concentrations the dimeric state is tightly associated in both the reduced and oxidized forms of the cytochrome but addition of saturating concentrations of CO causes the reduced ligated dimer to dissociate largely into monomers. A model is presented that quantitatively fits the data, involving a ligand-linked dimer-monomer dissociation reaction. In this model, CO binds to the dimer form noncooperatively with an intrinsic affinity constant equal to 5600 +/- 1200 M-1 at 25 degrees C. The unligated dimer form is tightly associated, but addition of CO causes dissociation of the dimer into the monomer with a monomer-dimer association constant equal to 450 +/- 200 M-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The dimeric high spin c-type cytochrome c' from Chromatium vinosum has been crystallized and the crystals characterized by x-ray diffraction. This cytochrome c' exhibits ligand-controlled dissociation from a dimer to a monomer upon binding carbon monoxide and represents an opportunity to obtain unique information concerning cooperativity in heme proteins. The C. vinosum cytochrome c' protein crystals are grown from polyethylene glycol 4000 and grow in both space group P2(1)2(1)2(1) (a = 49.2, b = 56.7, c = 98.8 A) and space group P2(1) (a = 55, b = 94, c = 50, beta = 106.1 A) depending upon the growth rate, with the P2(1)2(1)2(1) form favored at slower growth rates. The high resolution (2.0 A) atomic structure of the P2(1)2(1)2(1) form is being determined.  相似文献   

4.
The cytochrome c' from Chromatium vinosum has been studied through 1H NMR in the pH range 4-11 in both the oxidized and the reduced forms. The 1H NMR spectra are similar to those of the other cytochrome c' systems. Three pKa values of 5.1, 7.0, and 9.2 have been observed for the oxidized species and tentatively assigned to the two carboxylate propionic residues of the heme moiety and to the iron-coordinated histidine 125, respectively. The spectra are consistent with an essentially S = 5/2 state in all the pH ranges investigated. Some evidence is provided for conformational flexibilities. Among the oxidized cytochromes c' the present one is capable of binding cyanide, giving rise to a low spin state. The reduced species is a typical high spin iron(II) system.  相似文献   

5.
An unusual complex has been observed between the common electrophoresis tracer bromophenol blue (BPB) and the cytochrome c' from Chromatium vinosum during polyacrylamide gel electrophoresis. Complex formation results in a shift and increase in the intensity of the visible absorption band of BPB. Differential spectrophotometric titration of BPB with cytochrome c' indicates that one BPB binds to each of the two subunits of cytochrome c' with a binding constant of 4.2(0.5) x 10(5). The absence of a significant effect of ionic strength on the binding constant and the effect of Triton X-100 on the spectrum of BPB suggest that hydrophobic interactions are important to binding. An analysis of the structure of C. vinosum cytochrome c' shows the presence of a surface hydrophobic patch which may participate in the binding interaction. Many of the hydrophobic amino acids in the patch are well conserved by type among all known sequences of cytochrome c' and are found in loop elements of the 3D structure, suggesting a functional basis for conservation. It is proposed that the binding of BPB may mimic a relevant interaction involving the cytochrome c' biological function.  相似文献   

6.
7.
1H two-dimensional (nuclear Overhauser effect spectroscopy (NOESY) and two-dimensional correlated spectroscopy (COSY) spectra of cytochrome c' from Chromatium vinosum have been obtained. The protein is of medium size (Mr 28,000), essentially high spin (S = 5/2) although some quantum mechanical spin admixing with S = 3 2 may be present. Under these circumstances NOESY cross peaks have been revealed between geminal protons (alpha-CH2 propionate and beta-CH2 protons of the bound histidine) and between alpha-CH2 propionate protons and the heme methyl groups. COSY maps have confirmed the geminal nature of the proton pairs, even with a linewidth as large as 900 Hz; the J value is about 12 Hz. This assignment has rationalized on a sound basis the biochemical behavior of this protein with pH and has showed the utility of this kind of spectroscopy for the other cytochromes c' structures and analogous systems.  相似文献   

8.
Malic enzyme of the phototrophic bacterium Chromatium vinosum strain D that lacks malate dehydrogenase was partially purified yielding a specific activity of 55 units/mg protein. The constitutive enzyme with a molecular weight of 110,000 and a pH optimum of 8.0 was absolutely dependent on the presence of a monovalent cation (NH 4 + , K+, Cs+, or Rb+) as well as a divalent cation (Mn2+, or Mg2+). The enzyme was inhibited by oxaloacetate, glyoxylate, and NADPH. The K 0.5 value for L-malate and the inhibition constants for oxaloacetate and glyoxylate are dependent on the concentration of the monovalent cation, whereas the K m value for NADP (18 M) and the K 1 value for NADPH (42 M) are independent. Throughout all kinetic measurements hyperbolic saturation curves and linear double reciprocal plots were obtained.Abbreviations OAA oxaloacetate - OD optical density  相似文献   

9.
10.
Summary The role of adenine nucleotides in the control of the energy metabolism of Chromatium has been studied through the measurement of the levels of ATP ADP, and AMP in growing cultures. Comparison of these levels with the cellular chlorophyll levels indicates that ATP concentration, and not those of ADP, AMP, or any function of concentration of these three nucleotides, is a controlling factor in chlorophyll synthesis. In addition, the relationship of cellular ATP and chlorophyll levels to sulfur metabolism furnishes further evidence for the existence of two photosystems, postulated previously. The effects of high levels of exogenous ATP and ADP are consistent with these findings.  相似文献   

11.
Isolation and characterization of Chromatium vinosum membranes   总被引:6,自引:0,他引:6  
  相似文献   

12.
A fractionation of Chromatium vinosum into an outer layer (cell wall) and three intracellular membrane fractions by isopycnic sucrose density centrifugation of a total membrane fraction obtained by lysis of lysozyme-EDTA spheroplasts is decribed. The three intracellular fractions (I, II, and III) have apparent densities of 1.11, 1.14, and 1.16, respectively, and contain the bulk of the photosynthetic pigments. Fraction II is enriched in bacteriochlorophyll and contains about 49% of the total membrane protein and 60% of the membrane bacteriochlorophyll. The outer membrane fraction (IV, cell wall) has a density of 1.23 and contains 5% of the membrane protein and 0.8% of the bacteriochlorophyll. Fraction I is enriched in lipids and phosphorus and has only a trace of diaminopimelate (DAP). Fractions II and III both contain a significant content of DAP. Fraction IV has no DAP, but has a fatty acid composition similar to that of the envelope fraction. Electrophoresis of the fractions on sodium dodecylsulfate-containing gels yielded from 8–13 bands of protein. Fractions I, II, and III contained the same series of unique proteins, while fraction IV contained another group of unique proteins. In fraction IV the bulk of the proteins traveled in one band with a molecular weight of 41,500. Examination of the fractions and whole spheroplasts in the electron microscope showed that fractions I, II and III were composed of large membrane structures in the form of membrane reticulum with bud-like appendages, and elongated flattened tubes. Fraction IV was composed of large ovoid structures which were seen to lie on the outer surface of the whole spheroplasts. These results suggest that the normal in vivo state of the intracellular membranes is that of an interconnected series of tubules and vesicles extending throughout the cell cytoplasm.  相似文献   

13.
Average specific density of individual cells of pure cultures of Chromatium warmingii and Chromatium vinosum were measured by isopicnic gradient centrifugation with Percoll during growth at constant illumination as a function of the increasing content of intracellular sulfur. Cell number and volume, bacteriochlorophyll a, sulfide, and sulfur were followed in the cultures along with cellular buoyant density. Poly--hydroxybutyrate was monitored at several points during growth of the cultures. The density of C. warmingii changed from 1.071 to 1.108 g cm-3 (sulfur content per cell varied from 0 to 1.71pg). C. vinosum changed its density from 1.096 to 1.160 g cm-3 (sulfur content per cell varied from 0 to 0.43 pg). Maximum sulfur content in pg of sulfur per m3 of cell volume were 0.178 for C. warmingii and 0.294 for C. vinosum. Measurement of the differences in buoyant density, volume and sulfur content before and after ethanol extraction of cells with and without intracellular sulfur, allowed tentatively to estimate the density of sulfur inside the cells as 1.219 g cm-3. Isolation of sulfur globules and centrifugation in density gradients gave a density higher than 1.143 g cm-3 for these intracellular inclusions.Non-common abbreviations Bchl Bacteriochlorophyll - DMB Density Marker Beads - PHB poly--hydroxybutyrate  相似文献   

14.
Resonance Raman spectra of Chromatium vinosum cytochrome c' have been obtained for the five pH-dependent states of the protein [i.e., types I (pH 7), II (pH 10), and III (pH 12) of the ferric protein and type a (pH 7) and type n (pH 12) of the ferrous protein]. The raman spectra of type II and type a are consistent with those of high-spin, 5-coordinate heme proteins, such as deoxyhemoglobin, while spectra of type III and type n correspond more closely to those of low-spin, ferric and ferrous cytochrome c, respectively. Spectra of the CO-bound equilibrium species qualitatively resemble those of carbon monoxy human HbA. However, both the Fe-C and C = O stretching modes of the ligated species exhibit pH-dependent frequency shifts. Our data also indicate that CO photolysis is much more efficient at pH 7 than at pH 12. Moreover, the spectra of the photolytic transients suggest that unique, high-spin species are formed subsequent to CO photolysis from both type a and type n species.  相似文献   

15.
16.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

17.
Structural aspects of the core antenna in the purple sulfur bacteria Chromatium tepidum and Chromatium vinosum were studied by means of fluorescence emission and singlet-singlet annihilation measurements. In both species the number of bacteriochlorophylls of the core antenna between which energy transfer can occur corresponds to one core-reaction center complex only. From measurements of variable fluorescence we conclude that in C. tepidum excitation energy can be transferred back from the core antenna (B920) to the peripheral B800–850 complex in spite of the relatively large energy gap, and on basis of annihilation measurements a model of separate core-reaction center units accompanied by their own peripheral antenna is suggested. C. vinosum contains besides a core antenna, B890, two peripheral antennae, B800–820 and B800–850. Energy transfer was found to occur from the core to B800–850, but not to B800–820, and it was concluded that in C. vinosum each core-reaction center complex has its own complement of B800–850. The results reported here are compared to those obtained earlier with various strains and species of purple non-sulfur bacteria.Abbreviations BChl- bacteriochlorophyll - B800–820 and B800–850- antenna complexes with Qy-band absorption maxima near 800 nm and 820 or 850 nm, respectively - B890 and B920- antenna complexes with Qy-band absorption maxima near 890 and 920 nm, respectively - LH1- light harvesting 1 or core antenna - LH2- light harvesting 2 or peripheral antenna  相似文献   

18.
Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles aerobic bacterial cells in that it has an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. Both protein components were purified to homogeneity, and some of their properties were determined. Chromatium vinosum thioredoxin was slightly larger than other bacterial thioredoxins (13 versus 12 kilodaltons) but was similar in its specificity (ability to activate chloroplast NADP-malate dehydrogenase more effectively than chloroplast fructose-1,6-bisphosphatase) and immunological properties. As in other bacteria, Chromatium vinosum NADP-thioredoxin reductase was an arsenite-sensitive flavoprotein composed of two 33.5-kilodalton subunits, that required thioredoxin for the NADPH-linked reduction of 5,5'-dithiobis(2-nitrobenzoic acid). Chromatium vinosum NADP-thioredoxin reductase very effectively reduced several different bacterial-type thioredoxins (Escherichia coli, Chlorobium thiosulfatophilum (this name has not been approved by the International Committee of Systematic Bacteriology), Rhizobium meliloti) but not others (Clostridium pasteurianum, spinach chloroplast thioredoxin m). The results show that Chromatium vinosum contains an NADP-thioredoxin system typical of evolutionarily more advanced microorganisms.  相似文献   

19.
The photosynthetic response of the purple sulfur bacterium Chromatium vinosum DSM 185 to different degrees of illumination was analyzed. The microorganism was grown in continuous culture, and samples were taken from the effluent of the culture and incubated at different irradiances to determine the specific rate of sulfur oxidation as a measure of the photosynthetic activity of the organism. The activities obtained were plotted as a function of the specific rate of light uptake, and for each set of data a photosynthesis equation was fitted, which allowed the estimation of Pmax (photosynthetic capacity), qk (the threshold irradiance for light limitation), and m (maintenance coefficient). The results indicated that cells grown under light limitation are able to achieve higher photosynthetic activities than cells grown under light saturation. The photosynthetic capacity (Pmax) remained constant under all the conditions of illumination tested, while the maintenance expenses (m) were higher under light limitation. The parameter qk, on the contrary, decreased considerably at limiting irradiances. Received: 16 January 1998 / Accepted: 7 September 1998  相似文献   

20.
The capacity of photosynthetic CO2 fixation in the anaerobic purple-sulfur bacterium, Chromatium vinosum is markedly impaired by strong illumination (9 × 104 lux) in the presence of 100% O2. In the absence of HCO3, decline in activity occurred gradually, with about 40% of the initial activity remaining after a 1-hour incubation. The addition of 50 millimolar HCO3 to the incubation medium resulted in a measurable delay (about 30 minutes) of the inactivation process. Ribulose-1,5-bisphosphate carboxylase activity and light-dependent O2 uptake (electron flow) or crude extracts prepared after pretreatment of the bacterial cells with O2 and light were not affected but the photophosphorylation capacity of either bacterial cells or chromatophores was drastically reduced. The inhibition of photophos-phorylation in the chromatophore preparations was significantly reduced by the addition of either an O2 scavenger, Tiron, or an 1O2 scavenger, α-tocopherol. These results suggest that the active O2 species, O2 or 1O2, might take part in the observed inactivation.

The pretreatment of the bacteria with O2 and light inhibited CO2 assimilation through the Calvin-Benson cycle, while relatively stimulating the formation of aspartate and glutamate. It also inhibited the conversion of glycolate to glycine, resulting in a sustained extracellular excretion of glycolate. The inactivation of photosynthetic CO2 fixation by intact cells was enhanced by low temperature, KCN, or methylviologen addition during the pretreatment with O2 and light. The mechanism(s) of O2-dependent photoinactivation of photosynthetic activities in Chromatium are discussed in relation to the possible role of photorespiration as a means of producing CO2 in the photosynthetic system.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号