首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of plant responses to short-term cold treatments applied daily in the period of active growth remain unknown. Cucumber (Cucumis sativus L.) plants were subjected to brief drops of temperature (2 h, 12°C) at the end of each night over a 6-day period (DROP treatment) and to prolonged (6 days) cooling at 12°C (permanent low-temperature treatment, PLT). The plants exposed to cold treatments and control plants grown at 20°C were compared in terms of cold resistance and changes in gene expression. Cold resistance of plants was determined on the basis of LT50 temperature. The response of cucumber genetic machinery was assessed by means of a differential display method based on polymerase chain reaction (PCR). The changes in mRNA pool in cells of cucumber plants subjected to permanent and periodic chilling were assessed after comparing the populations of PCR fragments of cDNA. In both types of chilling protocols, the cold resistance started to increase from the 2nd day of low temperature treatment. At the end of the experiment (on the 6th day), the increment in cold resistance was three times larger for DROP compared to PLT treatment. Analysis of mRNA pool showed that the numbers of amplified fragments were nearly identical in both types of low-temperature treatment. The higher level of cold resistance under DROP conditions was assumed to depend on features of metabolism.  相似文献   

2.
We investigated the response of chilling-sensitive plants of cucumber (Cucumis sativus L.) to prolonged permanent (6 days) (PLT) and short-term (3 h) daily exposures to low non-freezing temperatures (9 and 12°С) (DROP) lying on different sides of the critical value (10°С) corresponding to a phase transition of membrane lipids in chilling-sensitive plants from a liquid-crystalline to a solid gel structure. Effects and aftereffects of DROP treatments at temperatures of 9 and 12°С (DROP9 and DROP12, respectively) were identical. They caused a reduction in linear dimensions of plants (as compared with control plants) and enhanced chilling tolerance of leaves but did not influence photosynthetic activity and water relations. However, when exposure to these temperatures was permanent (PLT9 and PLT12), their effects on plants were different. PLT9 almost entirely suppressed plant growth and development, inactivated photosynthetic apparatus (PSA), increased relative electrolite leakage (REL), and boosted lipid peroxidation (LPO). PLT12 also considerably reduced plant height and leaf area and suppressed (but did not inactivate) PSA; it did not boost POL or increased REL. It is important that, after the termination of chilling, PLT9 plants (unlike PLT12 plants) could not quickly resume growth and restore photosynthetic activity. Thus, considerable differences in plant responses to various patterns of chilling (long permanent or short-term daily) are probably due to the fact that, in the case of DROP treatments, relatively short-term (3 h) chilling of plants is followed in the diurnal cycle by a prolonged period (21 h) of optimal temperature when possible deviations and/or disturbances of PSA are restored and toxic substances that could accumulate in the course of chilling metabolized and/or neutralized. Pronounced differences in plant response to permanent exposure to temperatures of 9 and 12°С probably depend on the fact that these temperatures lie on different sides of a critical value (10°С) below which chilling-sensitive plants suffer grave physiological disturbances due to cooling. In addition, we showed that different responses of plants to PLT and DROP treatments are not determined by a usual dose-effect relationship but depend in many respects on the pattern of temperature influence (prolonged or short-term, single or recurring). As a result, the number of DROP spans experienced by plants in the experiments proved to be more important than their duration (at least, within a time interval from 2 to 12 h).  相似文献   

3.
Pringlea antiscorbutica R. Br., a subantarctic endemic cruciferous species, is endangered in its natural sites by several ecological changes. This species is tolerant to salinity and a permanent cold temperature on Kerguelen and Crozet Islands. We attempted the investigation of regulating mechanisms of osmotic adjustment in this species. 13C NMR analyses of water-soluble compounds from leaves collected from the field revealed glucose and proline to be the main accumulated organic solutes. Colorimetric determinations in these samples showed that proline and soluble carbohydrates were present at remarkably high levels. When young plants were cultivated in growth chambers they showed a good resistance to cold and medium resistance to saline conditions. High levels of soluble carbohydrates were present in all situations. Proline was accumulated in response to a saline and a cold treatment. The quantitative variations of the pool of proline in response to saline treatments were rapid and important. The adaptive value of these responses of organic solutes in the tolerance of Pringlea antiscorbutica to various stresses is discussed. Received: 16 June 1997 / Accepted: 5 May 1998  相似文献   

4.
The pattern of changes in the activity of various forms of invertase (acid soluble, alkaline, and acid insoluble) and the content of sugars (glucose, fructose, and sucrose) in the course of plant adaptation to prolonged (6 days) hypothermia (5°C) was investigated in the leaves of potato plants (Solanum tuberosum L., cv. Desiree) produced in vitro. We used the wild-type plants as a control and transformed plants with carbohydrate metabolism modified by inserting the yeast gene for invertase (apoplastic enzyme). In the course of adaptation to hypothermia, the activity of acid invertase was shown to rise and the content of sucrose and glucose to increase in the leaves of both genotypes. The greatest activity of acid invertases by the third day of cold acclimation corresponded to the peak level of sugars; in transformed plants, these characteristics exceeded those in the control plants. The transformed plants were more cold resistant than the control plants as suggested by the lack of disturbance of ion permeability of their membranes. It was concluded that owing to accumulation of low-molecular carbohydrates in the course of cold acclimation caused by activation of acid invertase cold resistant plants better adapt to temperature drop.  相似文献   

5.
In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 degrees C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana.  相似文献   

6.
Under salinity stress, plants commonly accumulate carbohydrates for osmotic adjustment to balance the excess accumulated ions and to protect biomolecules. We selected two cowpea cultivars with contrasting response to salinity, Pitiúba (salt-tolerant) and TVu (salt-sensitive), to investigate whether the salt tolerance could be associated with changes in carbohydrate accumulation and metabolism in leaves and roots during a long-term experiment. Two salt treatments (0 and 75 mM NaCl) were applied to 10-day-old plants grown in nutrient solution for 24 days. Despite some changes in carbohydrate accumulation and carbohydrate metabolism enzymes induced by salt stress, no consistent alterations in carbohydrates could be found in leaves or roots in this study. Therefore, we suggest that tolerance to salt stress is largely unrelated to carbohydrate accumulation in cowpea.  相似文献   

7.
Cucumber (Cucumis sativus L.), tomato (Solanum lycopersicum L.), and sweet pepper (Capsicum annuum L.) plants were subjected daily over 13 days to short-term (2 h) temperature drops to 12, 8, 4, and 1°C (DROP treatments) at the end of night periods, and effects of these chilling treatments on the ratio of dark respiration in leaves (Rd) to gross photosynthesis (Ag) were examined. The results showed that DROP treatments affected the Rd/Ag ratio in leaves: this ratio increased significantly in cucumber and tomato plants and was slightly affected in pepper plants. When the temperature drops to 12°C were applied, the increase in Rd/Ag ratio in cucumber and tomato plants was entirely due to the rise in Rd. In the case of temperature drops to 8°C and below, the increase in Rd/Ag was determined by both elevation of Rd and the concurrent decrease in Ag. In cucumber plants, the extent of Ag and Rd changes increased with the DROP severity, i.e., with lowering the temperature of DROP treatment. The inhibition of photosynthesis by DROP treatment in cucumber plants was accompanied by the diminished efficiency of light energy use for photosynthesis and by the increase in the light compensation point. The elevation in Rd/Ag ratio in cucumber plants was accompanied by the decline in growth characteristics, such as accumulation of aboveground biomass, plant height, and leaf area. It was concluded that the R/A ratio is an important indicator characterizing the adaptive potential of chilling-sensitive plant species and their response to daily short-term temperature drops.  相似文献   

8.
Tomato (Lycopersicon esculentum L., cv. Sibirskii skorospelyi) and cucumber (Cucumis sativus L., cv. Konkurent) plants were grown in a soil culture in a greenhouse at an average daily temperature of 20°C and ambient illumination until the development of five and eight true leaves, respectively. During the subsequent three days, some plants were kept in a climatic chamber at 6°C in the light, whereas other plants remained in a greenhouse (control). The cold-resistance of cucumber leaves and roots, as assayed from the electrolyte leakage, was reduced after cold exposure stronger than cold-resistance of tomato organs. The ratio photosynthesis/dark respiration was lower in cucumber than in tomato leaves at all measurement temperatures. The concentrations of sugars (sucrose + glucose + fructose) increased in chilled tomato roots but decreased in cucumber roots. Cold exposure changed the activities of various invertase forms (soluble and insoluble acidic and alkaline invertases). The total invertase activity and the ratio of mono- to disaccharides increased. The lower cucumber cold-resistance is related to the higher sensitivity of its photosynthetic apparatus to chilling and, as a consequence, insufficient root supply with sugars.  相似文献   

9.
Central carbohydrate metabolism of Arabidopsis thaliana is known to play a crucial role during cold acclimation and the acquisition of freezing tolerance. During cold exposure, many carbohydrates accumulate and a new metabolic homeostasis evolves. In the present study, we analyse the diurnal dynamics of carbohydrate homeostasis before and after cold exposure in three natural accessions showing distinct cold acclimation capacity. Diurnal dynamics of soluble carbohydrates were found to be significantly different in cold-sensitive and cold-tolerant accessions. Although experimentally determined maximum turnover rates for sucrose phosphate synthase in cold-acclimated leaves were higher for cold-tolerant accessions, model simulations of diurnal carbohydrate dynamics revealed similar fluxes. This implied a significantly higher capacity for sucrose synthesis in cold-tolerant than cold-sensitive accessions. Based on this implication resulting from mathematical model simulation, a critical temperature for sucrose synthesis was calculated using the Arrhenius equation and experimentally validated in the cold-sensitive accession C24. At the critical temperature suggested by model simulation, an imbalance in photosynthetic carbon fixation ultimately resulting in oxidative stress was observed. It is therefore concluded that metabolic capacities at least in part determine the ability of accessions of Arabidopsis thaliana to cope with changes in environmental conditions.  相似文献   

10.
Plants generally deal with biotic or abiotic stresses by altering components as for example cell wall constituents and metabolites. Infection by Phytophthora infestans, the causal agent of late blight, constitutes a stress condition for the plants and they react to it with changes arising in their metabolism depending on the resistance level of the plants. The present work compares two potato hybrids differing in their level of horizontal resistance to late blight. Carbohydrate content in stems and leaves of infected and uninfected plants was determined by HPLC. Some carbohydrates accumulated in the stems of the resistant hybrid infected by P. infestans, whereas they remained unchanged in the susceptible hybrid. On the other hand, in the leaves, these carbohydrates accumulated only in the infected susceptible hybrid.  相似文献   

11.
The imperial bromeliad Alcantarea imperialis grows naturally on rocky outcrops (‘inselbergs’) in regions where daily temperatures vary from 5 to 40°C. As carbohydrate metabolism is altered in response to cold, it could lead to reprogramming of the metabolic machinery including the increase in levels of metabolites that function as osmolytes, compatible solutes, or energy sources in order to maintain plant homeostasis. The aim of this study was to evaluate the effects of different temperatures on plant growth and non-structural carbohydrates in plants of A. imperialis adapted to low temperature. Seedlings of A. imperialis were grown in vitro under a 12-h photoperiod with four different day/night temperature cycles: 5/5°C, 15/15°C, 15/30°C (dark/light) and 30/30°C. Plants were also cultivated at 26°C in ex vitro conditions for comparison. The results showed an inverse relationship between temperature and germination time and no differences in the percentage of germination. Plants maintained for 9 months at 15°C presented a reduced number of leaves and roots, and a dry mass four times lower than plants grown at 30°C. Sugar content was higher in plants grown at 15°C than at 30°C. However, the highest amount of total sugar was found in plants growing under warm day/cold night conditions. Myo-inositol, glucose, fructose and sucrose were found predominantly under high temperatures, while under low temperatures, sucrose was apparently replaced by trehalose, raffinose and stachyose. Starch content was highest in plants grown under high temperatures. The lowest starch content was detected under low temperatures, suggesting its conversion into soluble carbohydrates to protect the plants against cold. These results indicated that low temperature retarded growth of A. imperialis and increased sugar levels, mainly trehalose, thus suggesting that these sugar compounds could be involved in cold tolerance.  相似文献   

12.
Cucumber (Cucumis sativus L.) seeds were pretreated with exogenous abscisic acid (ABA) prior to germination. After germination, seedlings with three leaves were exposed to gradual dehydration. The effects of ABA on photosynthetic rate (Pn), daily water loss (WL) and water utilization efficiency (WUE) during dehydration were investigated, in addition to the variation of carbohydrates in leaves. ABA improved the Pn, WL and WUE of cucumber seedlings during dehydration. After rehydration, the seedlings pretreated with ABA showed a higher recovery in Pn, WL and WUE, as compared to those without an ABA pretreatment. Subsequent to dehydration, concentration of stachyose, raffinose, sucrose, glucose, and fructose increased in seedlings pretreated with ABA. Dehydration altered the proportions of the sugars in the total carbohydrates, and accelerated the accumulation of stachyose, raffinose and sucrose. After rehydration, carbohydrate concentrations of seedlings pretreated with ABA recovered to levels observed prior to dehydration. These results demonstrated that pretreatment of seeds with exogenous ABA enhanced carbohydrate tolerance to dehydration of cucumber seedlings.  相似文献   

13.
To test the hypothesis that the up‐regulation of sucrose biosynthesis during cold acclimation is essential for the development of freezing tolerance, the acclimation responses of wild‐type (WT) Arabidopsis thaliana (Heynh.) were compared with transgenic plants over‐expressing sucrose phosphate synthase (over‐sps) or with antisense repression of either cytosolic fructose‐1,6‐bisphosphatase (antifbp) or sucrose phosphate synthase (antisps). Plants were grown at 23 °C and then shifted to 5 °C. The leaves shifted to 5 °C for 10 d and the new leaves that developed at 5 °C were compared with control leaves on plants at 23 °C. Plants over‐expressing sucrose phosphate synthase showed improved photosynthesis and increased flux of fixed carbon into sucrose when shifted to 5 °C, whereas both antisense lines showed reduced flux into soluble sugars relative to WT. The improved photosynthetic performance by the over‐sps plants shifted to 5 °C was associated with an increase in freezing tolerance relative to WT (?9.1 and ?7.2 °C, respectively). In contrast, both antisense lines showed impaired development of freezing tolerance (? 5.2 and ?5.8 °C for antifbp and antisps, respectively) when shifted to 5 °C. In the new leaves developed at 5 °C the recovery of photosynthesis as typically seen in WT was strongly inhibited in both antisense lines and this inhibition was associated with a further failure of both antisense lines to cold acclimate. Thus, functional sucrose biosynthesis at low temperature in the over‐sps plants reduced the inhibition of photosynthesis, maintained the mobilization of carbohydrates from source leaves to sinks and increased the rate at which freezing tolerance developed. Modification of sucrose metabolism therefore represents an additional approach that will have benefits both for the development of freezing tolerance and over‐wintering, and for the supply of exportable carbohydrate to support growth at low temperatures.  相似文献   

14.
Abscisic acid (ABA), salicylic acid (SA) and γ‐aminobutyric acid (GABA) are known to play roles in regulating plant stress responses. This study was conducted to determine metabolites and associated pathways regulated by ABA, SA and GABA that could contribute to drought tolerance in creeping bentgrass (Agrostis stolonifera). Plants were foliar sprayed with ABA (5 μM), GABA (0.5 mM) and SA (10 μM) or water (untreated control) prior to 25 days drought stress in controlled growth chambers. Application of ABA, GABA or SA had similar positive effects on alleviating drought damages, as manifested by the maintenance of lower electrolyte leakage and greater relative water content in leaves of treated plants relative to the untreated control. Metabolic profiling showed that ABA, GABA and SA induced differential metabolic changes under drought stress. ABA mainly promoted the accumulation of organic acids associated with tricarboxylic acid cycle (aconitic acid, succinic acid, lactic acid and malic acid). SA strongly stimulated the accumulation of amino acids (proline, serine, threonine and alanine) and carbohydrates (glucose, mannose, fructose and cellobiose). GABA enhanced the accumulation of amino acids (GABA, glycine, valine, proline, 5‐oxoproline, serine, threonine, aspartic acid and glutamic acid) and organic acids (malic acid, lactic acid, gluconic acid, malonic acid and ribonic acid). The enhanced drought tolerance could be mainly due to the enhanced respiration metabolism by ABA, amino acids and carbohydrates involved in osmotic adjustment (OA) and energy metabolism by SA, and amino acid metabolism related to OA and stress‐defense secondary metabolism by GABA.  相似文献   

15.
To predict the effects of temperature changes on plant growth and performance, it is crucial to understand the impact of thermal history on leaf morphology, anatomy and physiology. Here, we document a comprehensive range of leaf phenotypes in 25/20 °C‐grown Arabidopsis thaliana plants that were shifted to 5 °C for up to 2 months. When warm‐grown, pre‐existing (PE) leaves were exposed to cold, leaf thickness increased due to an increase in mesophyll cell size. Leaves that were entirely cold‐developed (CD) were twice as thick (eight cell layers) as their warm‐developed (WD) counterparts (six layers), and also had higher epidermal and stomatal cell densities. After 4 d of cold, PE leaves accumulated high levels of total non‐structural carbohydrates (TNC). However, glucose and starch levels declined thereafter, and after 45 d in the cold, PE leaves exhibited similar TNC to CD leaves. A similar phenomenon was observed in δ13C and a range of photosynthetic parameters. In cold‐treated PE leaves, an increase in respiration (Rdark) with cold exposure time was evident when measured at 25 °C but not 5 °C. Cold acclimation was associated with a large increase in the ratio of leaf Rdark to photosynthesis. The data highlight the importance of understanding developmental thermal history in determining individual phenotypic traits.  相似文献   

16.
A decreased utilization of NADPH for CO2 fixation as a result of carbohydrate accumulation in chlorotic leaves is generally believed to be associated with an increase in oxidative stress. Molecular oxygen may serve as an alternative electron acceptor of photosynthesis under these conditions. In order to test this hypothesis mature leaves of tobacco plants (Nicotiana tabacum) were detached, fed with glucose (50 mM) via the petiole, and used to study the effect of carbohydrate accumulation on the pigment content and the components of the superoxide dismutase-ascorbate-glutathione cycle. During a period of five days the concentration of total soluble carbohydrates increased substantially in leaves supplied with glucose in comparison with control leaves supplied only with water. This increase was accompanied by a twofold decrease in the chlorophyll content. In detached water-fed leaves the levels of most of the antioxidative components increased, whereas glucose feeding had no or only little additional effect on the activities of the protective enzymes, but caused a 1.6- and 4-fold increase in the contents of glutathione and ascorbate, respectively. In relation to the total foliar ascorbate pool, the amount of reduced ascorbate increased from about 30 % to 60 % upon feeding with glucose. These results do not support the idea that the accumulation carbohydrates per se cause an increased rate of superoxide production which necessitates increased activities of antioxidative enzymes. It rather appears that glucose-fed leaves have an increased reductive capacity that can be released via glutathione into the ascorbate pool, thereby, regulating the redox state of ascorbate.  相似文献   

17.
Temperature and mineral nutrition are major environmental factors regulating plant growth and development. Yet, cold impact on mineral contents and the ability of the plants to perform changes in specific elements as a part of the acclimation process received little attention. Using five Coffea genotypes previously characterized concerning their cold sensitivity, a mineral analysis was performed considering macro (N, P, K, Ca, Mg, and S) and micro (Na, Fe, Mn, Zn, Cu, and B) nutrients in order to predict their importance in cold tolerance. The results showed a cold-induced dynamics of mineral nutrients in recently mature leaves. The less cold sensitive Icatu, and partially Catuaí, accumulated N, Ca, Mn, Cu, and Zn with potential implications in the maintenance of photosynthetic performance, the reinforcement of the antioxidative defense system, lipid metabolism, and the expression of cold regulated genes, thus constituting interesting traits to evaluate the cold acclimation ability. After a principal component analysis (PCA), N, Fe, Mn, and Cu were further confirmed as strong candidates for an early cold tolerance evaluation due to their dynamics and to specific roles in the activities of Cu/Zn-SOD (Cu), APX (Fe), and PSII (Mn).  相似文献   

18.
Salix paraplesia was used as an experimental model to investigate the effect of short day photoperiod (SD) and low temperature (LT) on development of freezing tolerance and on endogenous abscisic acid (ABA) contents. We characterized differences in SD and LT-induced cold acclimation in three ecotypes from different altitudes. The results demonstrated that cold acclimation could be triggered by exposing the plants to SD or LT alone, and that a combination of the different treatments had an additive effect on freezing tolerance in all ecotypes studied. However, the high altitudinal ecotype was more responsive to SD and LT than the low altitudinal ecotype. Development of freezing tolerance induced by SD and LT was accompanied by changes in ABA contents which were ecotype-dependent. Although the stem had higher initial freezing tolerance, the leaves developed freezing tolerance more quickly than the stem and thus leaves may provide an interesting experimental system for physiological and molecular studies of cold acclimation in woody plants.  相似文献   

19.
Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild‐type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses.  相似文献   

20.
During cold acclimation by higher plants, temperature perception via changes in redox state of Photosystem II (PSII) and subsequent acclimation of the photosynthetic apparatus to cold is very important for achieving freezing tolerance. These properties were studied in two groups (A and B) of the same backcross 3 (BC3) progeny derived from a triploid hybrid of Festuca pratensis (2×) × Lolium multiflorum (4×) backcrossed three times onto diploid L. multiflorum cultivars. Leaves of Group A plants formed at 20°C at medium-low light were unable to acclimate their photosynthetic apparatus to cold. Compared to Group B, the Group A plants were also more frost sensitive. This acclimation ability correlated with the freezing tolerance of the plants. However, leaves of the same Group A plants developed at 20°C, but under higher-light conditions had increased ability to acclimate their photosynthetic apparatus to cold. It was concluded that Group A plants may have impaired PSII temperature perception, and this then resulted in their poor capability to cold acclimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号