首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study is an attempt to relate the multicomponent response of the cytoskeleton (CSK), evaluated in twisted living adherent cells, to the heterogeneity of the cytoskeletal structure - evaluated both experimentally by means of 3D reconstructions, and theoretically considering the predictions given by two tensegrity models composed of (four and six) compressive elements and (respectively 12 and 24) tensile elements. Using magnetic twisting cytometry in which beads are attached to integrin receptors linked to the actin CSK of living adherent epithelial cells, we specifically measured the elastic CSK response at quasi equilibrium state and partitioned this response in terms of cortical and cytosolic contributions with a two-component model (i.e., a series of two Voigt bodies). These two CSK components were found to be prestressed and exhibited a stress-hardening response which both characterize tensegrity behaviour with however significant differences: compared to the cytosolic component, the cortical cytoskeleton appears to be a faster responding component, being a less prestressed and easily deformable structure. The discrepancies in elastic behaviour between the cortical and cytosolic CSK components may be understood on the basis of prestress tensegrity model predictions, given that the length and number of constitutive actin elements are taken into account.  相似文献   

2.
 Adherent cells sense their mechanical environment, which, in turn, regulates their functions. During the past decade, a growing body of evidence has indicated that a deformable, solid-state intracellular structure known as the cytoskeleton (CSK) plays a major role in transmitting and distributing mechanical stresses within the cell as well as in their conversion into a chemical response. Therefore in order to understand mechanical regulation and control of cellular functions, one needs to understand mechanisms that determine how the CSK changes its shape and mechanics in response to stress. In this survey, we examined commonly used structurally based models of the CSK. In particular, we focused on two classes of these models: open-cell foam networks and stress-supported structures. We identified the underlying mechanisms that determine deformability of those models and compare model predictions with data previously obtained from mechanical tests on cultured living adherent cells at steady state. We concluded that stress-supported structures appear more suitable for describing cell deformability because this class of structures can explain the central role that the cytoskeletal contractile prestress plays in cellular mechanics. Received: 2 January 2002 / Accepted: 27 February 2002  相似文献   

3.
T M Svitkina 《Tsitologiia》1989,31(12):1435-1440
Cytoskeleton organization of cultured normal epithelial cells (epithelium of newborn mouse kidney, mouse and rat hepatocytes) was studied using electron microscopy of platinum replicas. These cells in culture were firmly connected with each other and formed multicellular islands. Pseudopodial activity was observed only at the free edges of marginal cells of the islands. Cytoskeleton in the vicinity of such active edges included several structurally different zones. The most peripheral zone contained dense actin meshwork. More inner "sparse" zone contained loose actin filament network. Next zone in the same direction was the lamella proper. It contained individual microfilaments and their bundles or meshwork patches. Microtubules and intermediate filaments were also present in the lamella proper. The characteristic feature of the central (endoplasmic) region of the marginal cells of the islands was the presence of the submembranous microfilament sheath. Microfilaments in the sheath were densely packed. Individual fibers were visible along a significant distance. The inner cells in the epithelial islands had no zonal organization of the cytoskeleton. The endoplasmic microfilament sheath occupied the whole dorsal cell surface in these cells. Different epithelia studied here had some variations in the relative width of cytoskeletal zones. The organization of cytoskeleton in the epithelial cells has many features in common with that in fibroblasts. Possible mechanisms of establishment of the zonal cytoskeletal organization in both the cell types are discussed.  相似文献   

4.
Shigella, the causative agent of bacillar dysentery, invades colonic epithelial cells and moves intracellularly to spread from cell to cell. The processes of Shigella entry, determined by the Ipa proteins, and of actin-based motility, dependent on the IcsA/VirG protein, represent different levels of bacterial manipulation of the cell cytoskeleton.  相似文献   

5.
Global cytoskeletal control of mechanotransduction in kidney epithelial cells   总被引:10,自引:0,他引:10  
Studies of mechanotransduction mediated by stress-sensitive ion channels generally focus on the site of force application to the cell. Here we show that global, cell-wide changes in cytoskeletal structure and mechanics can regulate mechanotransduction previously shown to be triggered by activation of the mechanosensitive calcium channel, polycystin-2, in the apical primary cilium of renal epithelial cells [S.M. Nauli, F.J. Alenghat, Y. Luo, E. Williams, P. Vassilev, X. Li, A.E. Elia, W. Lu, E.M. Brown, S.J. Quinn, D.E. Ingber, J. Zhou, Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat. Genet. 33 (2003) 129-37]. Disrupting cytoplasmic microfilaments or microtubules in these cells eliminated fluid shear stress-induced increase of intracellular calcium. Altering the cytoskeletal force balance by inhibiting actomyosin-based tension generation (using 2,3-butanedione monoxime), interfering with microtubule polymerization (using nocodazole, cochicine, or taxol), or disrupting basal integrin-dependent extracellular matrix adhesions (using soluble GRGDSP peptide or anti-beta1 integrin antibody), also inhibited the calcium spike in response to fluid stress. These data indicate that although fluid stress-induced displacement of the primary cilium may be transduced into a calcium spike through activation of polycystin-2 and associated calcium-induced calcium release from intracellular stores, this mechanotransduction response is governed by global mechanical cues, including isometric tension (prestress) within the entire cytoskeleton and intact adhesions to extracellular matrix.  相似文献   

6.
Three distinct bacterial populations have been defined in the bovine rumen: the rumen fluid population; the population associated with food particles; and the population adherent to the rumen epithelium. Alkaline phosphatase activity has been reported in cells of the first two populations and here we report that assays of rumen epithelial samples containing both tissue and bacteria also contain the enzyme. The reaction product technique has localized the enzyme both in adherent bacteria and in cell of the stratified squamous rumen epithelium. The epithelium of the abomasum shows much lower levels of alkaline phosphatase activity.  相似文献   

7.
We describe a three-dimensional magnetic twisting device that is useful in characterizing the mechanical properties of cells. With the use of three pairs of orthogonally aligned coils, oscillatory mechanical torque was applied to magnetic beads about any chosen axis. Frequencies up to 1 kHz could be attained. Cell deformation was measured in response to torque applied via an RGD-coated, surface-bound magnetic bead. In both unpatterned and micropatterned elongated cells on extracellular matrix, the mechanical stiffness transverse to the long axis of the cell was less than half that parallel to the long axis. Elongated cells on poly-L-lysine lost stress fibers and exhibited little mechanical anisotropy; disrupting the actin cytoskeleton or decreasing cytoskeletal tension substantially decreased the anisotropy. These results suggest that mechanical anisotropy originates from intrinsic cytoskeletal tension within the stress fibers. Deformation patterns of the cytoskeleton and the nucleolus were sensitive to loading direction, suggesting anisotropic mechanical signaling. This technology may be useful for elucidating the structural basis of mechanotransduction. cytoskeleton; prestress; stress fibers; mechanotransduction; mechanical deformation  相似文献   

8.
Cytoplasmic transport of large molecules such as plasmid DNA (pDNA) has been shown to increase when cells are subjected to mild levels of cyclic stretch for brief periods. In the case of pDNA, this is in part due to the increased active transport of pDNA along stabilized, acetylated microtubules in the cytoplasm, whose levels are increased in response to stretch. It also has been shown that disruption of the dense actin network leads to increased pDNA and macromolecule diffusion as well. We hypothesize that stretch not only increases active transport of pDNA but also, similar to actin disrupting drugs, decreases cytoplasmic stiffness leading to a less restive pathway for macromolecules to diffuse. To test this we used particle tracking microrheology to measure cytoplasmic mechanics. We conclude that while cyclic stretch transiently decreases cytoplasmic stiffness and increases diffusivity, stretch‐independent modulation of the levels of acetylated, stable microtubules has no effect on cytoplasmic stiffness. Furthermore, stretching cells that have maximally acetylated microtubules increases cytoplasmic trafficking of pDNA, without increasing levels of acetylated microtubules. These findings suggest that stretch‐enhanced gene transfer may occur by two independent mechanisms: increased levels of acetylated microtubules for directed active transport, and reduced cytoplasmic stiffness for increased diffusion. Biotechnol. Bioeng. 2011;108: 446–453. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Central tolerance to self-antigen expressed by cortical epithelial cells   总被引:3,自引:0,他引:3  
The exposure of developing thymocytes to high-affinity self-Ag results in T cell tolerance. A predominant mechanism for this is clonal deletion; though receptor editing, anergy induction, and positive selection of regulatory T cells have also been described. It is unclear what signals are involved in determining different tolerance mechanisms. In particular, OT-I mice displayed receptor editing when the high-affinity self-Ag was expressed in cortical epithelial cells (cEC) using the human keratin 14 promoter. To test the hypothesis that receptor editing is a consequence of a unique instruction given by cEC presenting self-Ag, we created mice expressing the 2C and HY ligands under control of the keratin 14 promoter. Alternatively, we studied the fate of developing T cells in OT-I mice where Ag was presented by all thymic APC. Surprisingly, we found that the tolerance mechanism was not influenced by the APC subset involved in presentation. Clonal deletion was observed in 2C and HY models even when Ag was presented only by cEC; and receptor editing was observed in OT-I mice even when Ag was presented by all thymic APC. These results suggest that different TCRs show intrinsic differences in thymic tolerance mechanism.  相似文献   

10.
The highly homologous ERM (ezrin/radixin/moesin) proteins, molecular cross-linkers which connect the cell membrane with the underlying cytoskeleton, have molecular weights of 81, 80 and 78 kDa respectively. We present data which shows significant variation in the molecular weight and presence of multiple forms of ERM proteins in different cell lines, such that specific antibodies to each protein are essential for unambiguous detection. Biochemical fractionation of MDCK cells demonstrates that although the individual ERM fractionation patterns are unaltered by cell density, the multiple forms of moesin each associate with different subcellular fractions. Since ERM proteins can exist in dormant or active conformations corresponding to their phosphorylation state, we propose that the partitioning of ERM proteins between subcellular compartments may depend on their activation status. In addition, we show that when the co-localization between ezrin and F-actin is disrupted by cytochalasin D, MDCK cells undergo a dramatic morphology change during which long, branching, ezrin-rich protrusions are formed. Consistent with other workers, our data suggest that maintenance of ezrin:F-actin interactions are required for the maintenance of normal cellular morphology.  相似文献   

11.
Opitz D  Maier B 《PloS one》2011,6(2):e17088
Many bacterial pathogens interfere with cellular functions including phagocytosis and barrier integrity. The human pathogen Neissieria gonorrhoeae generates grappling hooks for adhesion, spreading, and induction of signal cascades that lead to formation cortical plaques containing f-actin and ezrin. It is unclear whether high mechanical forces generated by type IV pili (T4P) are a direct signal that leads to cytoskeletal rearrangements and at which time scale the cytoskeletal response occurs. Here we used laser tweezers to mimic type IV pilus mediated force generation by T4P-coated beads on the order of 100 pN. We found that actin-EGFP and ezrin-EGFP accumulated below pilus-coated beads when force was applied. Within 2 min, accumulation significantly exceeded controls without force or without pili, demonstrating that T4P-generated force rapidly induces accumulation of plaque proteins. This finding adds mechanical force to the many strategies by which bacteria modulate the host cell cytoskeleton.  相似文献   

12.
13.
The docking protein Gab2 is overexpressed in several human malignancies, including breast cancer, and is associated with increased metastatic potential. Here we report that Gab2 overexpression in MCF-10A mammary epithelial cells led to delayed cell spreading, a decrease in stress fibers and mature focal adhesions, and enhanced cell migration. Expression of a Gab2 mutant uncoupled from 14-3-3-mediated negative feedback (Gab2(2xA)) led to a more mesenchymal morphology and acquisition of invasive potential. Expression of either Gab2 or Gab2(2xA) led to decreased activation of RhoA, but only the latter increased levels of Rac-GTP. Expression of constitutively active RhoA in MCF-10A/Gab2 cells restored stress fibers and focal adhesions, indicating that Gab2 signals upstream of RhoA to suppress these structures. Mutation of the two Shp2-binding sites to phenylalanine (Gab2(ΔShp2)) markedly reduced the effects of Gab2 on cellular phenotype and RhoA activation. Expression of Gab2 or Gab2(2xA), but not Gab2(ΔShp2), promoted Vav2 phosphorylation and plasma membrane recruitment of p190A RhoGAP. Knockdown of p190A RhoGAP reversed Gab2-mediated effects on stress fibers and focal adhesions. The identification of a novel pathway downstream of Gab2 involving negative regulation of RhoA by p190A RhoGAP sheds new light on the role of Gab2 in cancer progression.  相似文献   

14.
The effects of scatter factor on the cytoskeleton of MDCK and PtK2 cells are described. During the first 6 h after the addition of scatter factor, MDCK cells were found to increase their projected areas twofold, as well as the number and size of their F-actin stress fibers. In contrast PtK2 cells showed no change in their projected areas or in their stress fiber content. However, when both MDCK and PtK2 cells began to separate and scatter after approximately 6 h, the size and number of stress fibers was found to decrease considerably. Unscattered PtK2 cells and cells treated with scatter factor which had yet to scatter showed focal contacts present over the whole ventral surface, as judged by staining for both vinculin and talin. After treated cells separated, both vinculin and talin staining were mainly present in focal contacts on the ventral surfaces of the cell bodies and the distal ends of the processes. However, the cell processes showed few focal contacts along their lengths. The distribution of microtubules and vimentin and keratin intermediate filaments also did not change significantly until scattering had occurred. After cell separation, the processes were always packed with microtubules which were often, but not always, rich in detyrosinated alpha-tubulin and often, but not always, packed with intermediate filaments. All these changes in cytoskeletal organization are consistent with the adoption of a much more motile phenotype. The changes found are compared with those brought about by transformation.  相似文献   

15.
The present study examines the role of calcium in modulating epithelial cytomorphology by using verapamil, a calcium antagonist, and considering its effects on cytosolic granule distribution and exocytosis in toad urinary bladder. The effect of verapamil on the detection and distribution of microfilaments in toad urinary bladder using immunogold labeling techniques in toad urinary bladder epithelial cells was also examined. Verapamil, which inhibits antidiuretic hormone (ADH)-mediated water flow, increased the number, size and distribution of dense calcium-containing secretory granules in bladder epithelial cells. This calcium antagonist prevented granule exocytosis, such that, six-times the number of granules were present in verapamil-treated tissues. The normal cytomorphological changes that accompany the actions of ADH were attenuated by verapamil, including ADH-induction of microvilli. ADH increased the number of actin microfilaments as determined using protein A-gold by immunolabeling, whereas, verapamil treatment was unremarkable as compared to control. The results suggest that calcium may play a prominent role in mediating granule exocytosis and membrane fusion events that normally accompany hormone action.  相似文献   

16.
Many structural modifications have been observed as a part of the cellular response to mechanical loading in a variety of cell types. Although changes in morphology and cytoskeletal rearrangement have been widely reported, few studies have investigated the change in cytoskeletal composition. Measuring how the amounts of specific structural proteins in the cytoskeleton change in response to mechanical loading will help to elucidate cellular mechanisms of functional adaptation to the applied forces. Therefore, the overall hypothesis of this study was that osteoblasts would respond to fluid shear stress by altering the amount of specific cross-linking proteins in the composition of the cytoskeleton. Mouse osteoblats cell line MC3T3-E1 and human fetal osteoblasts (hFOB) were exposed to 2 Pa of steady fluid shear for 2 h in a parallel plate flow chamber, and then the amount of actin, vimentin, -actinin, filamin, and talin in the cytoskeleton was measured using Western blot analyses. After mechanical loading, there was no change in the amount of actin monomers in the cytoskeleton, but the cross-linking proteins -actinin and filamin that cofractionated with the cytoskeleton increased by 29% (P < 0.01) and 18% (P < 0.02), respectively. Localization of the cross-linking proteins by fluorescent microscopy revealed that they were more widely distributed throughout the cell after exposure to fluid shear. The amount of vimentin in the cytoskeleton also increased by 15% (P < 0.01). These results indicate that osteoblasts responded to mechanical loading by altering the cytoskeletal composition, which included an increase in specific proteins that would likely enhance the mechanical resistance of the cytoskeleton. MC3T3-E1; human fetal osteoblasts; -actinin; filamin; cytoskeleton  相似文献   

17.
We analysed the distribution of actin mRNA in intestinal epithelial cells using in situ hybridization of 35S-labelled cytoplasmic beta-actin RNA. We found that the distribution of actin mRNA generally parallels that of polymerized actin, i.e. there is an accumulation of actin mRNA in the apical end of villous epithelial cells. Furthermore, the development of this asymmetric localization of actin mRNA appears to parallel the elaboration of the cytoskeleton during cellular differentiation. We discuss the possibility that the interaction between actin and its mRNA may be important for the establishment and maintenance of cytoskeletal pattern in polarized epithelial cells.  相似文献   

18.
Fodil R  Laurent V  Planus E  Isabey D 《Biorheology》2003,40(1-3):241-245
Evaluation of the cytoskeleton mechanical properties requires specific micromanipulation techniques such as the magnetic twisting cytometry technique, in which microbeads are specifically linked to the cytoskeleton via transmembrane receptors. The aim of the study was to assess the structural relationship between the bead and the cytoskeleton structure. The spatial arrangement of the CSK network was therefore studied in fixed cells probed by beads and stained for F-actin by rhodamined phallo?dine. The spatial character of the actin CSK network, both in the bead neighborhood and at the cell scale, could then be studied for various degrees of fluorescent intensity from 3D-images of the actin structure, reconstructed from z-stack views obtained by confocal microscopy. Results show the feasibility of the staining/reconstruction technique which allows to reveal the three-dimensional organization of the cytoskeleton structure including an internal cytosolic structure with a high fluorescent F-actin intensity, and a sub-membranous cortical structure with a low fluorescent F-actin intensity.  相似文献   

19.
A. Braiman  Z. Priel 《Cell calcium》2001,30(6):361-371
A stable localized region of high calcium concentration near the plasma membrane has been postulated to exist as an outcome of prolonged calcium influx and to play a crucial role in regulation of cellular life. However, the mechanism supporting this phenomenon is a perplexing problem. We show here that a sustained localized region of high cytosolic Ca(2+) concentration is formed near the plasma membrane. Calcium influx, calcium uptake by intracellular stores and calcium release from the stores are essential for this phenomenon. Our results strongly suggest that the mechanism of formation of stable calcium gradient near the plasma membrane involves a process of active redistribution-uptake of entering calcium into intracellular stores and its release from the stores toward the plasma membrane.  相似文献   

20.
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号