首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To examine the role of the mitochondrial polymerase (Pol gamma) in clinically observed toxicity of nucleoside analogs used to treat AIDS, we examined the kinetics of incorporation catalyzed by Pol gamma for each Food and Drug Administration-approved analog plus 1-(2-deoxy-2-fluoro-beta-D-arabinofuranosyl)-5-iodouracil (FIAU), beta-L-(-)-2',3'-dideoxy-3'-thiacytidine (-)3TC, and (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA). We used recombinant exonuclease-deficient (E200A), reconstituted human Pol gamma holoenzyme in single turnover kinetic studies to measure K(d) (K(m)) and k(pol) (k(cat)) to estimate the specificity constant (k(cat)/K(m)) for each nucleoside analog triphosphate. The specificity constants vary more than 500,000-fold for the series ddC > ddA (ddI) > 2',3'-didehydro-2',3'-dideoxythymidine (d4T) > (+)3TC > (-)3TC > PMPA > azidothymidine (AZT) > Carbovir (CBV). Abacavir (prodrug of CBV) and PMPA are two new drugs that are expected to be least toxic. Notably, the higher toxicities of d4T, ddC, and ddA arose from their 13-36-fold tighter binding relative to the normal dNTP even though their rates of incorporation were comparable with PMPA and AZT. We also examined the rate of exonuclease removal of each analog after incorporation. The rates varied from 0.06 to 0.0004 s(-1) for the series FIAU > (+)3TC approximately equal to (-)3TC > CBV > AZT > PMPA approximately equal to d4T > ddA (ddI) > ddC. Removal of ddC was too slow to measure (<0.00002 s(-1)). The high toxicity of dideoxy compounds, ddC and ddI (metabolized to ddA), may be a combination of high rates of incorporation and ineffective exonuclease removal. Conversely, the more effective excision of (-)3TC, CBV, and AZT may contribute to lower toxicity. FIAU is readily extended by the next correct base pair (0.13 s(-1)) faster than it is removed (0.06 s(-1)) and, therefore, is stably incorporated and highly mutagenic. We define a toxicity index for chain terminators to account for relative rates of incorporation versus removal. These results provide a method to rapidly screen new analogs for potential toxicity.  相似文献   

3.
Lee H  Hanes J  Johnson KA 《Biochemistry》2003,42(50):14711-14719
Incorporation of nucleoside analogues by the mitochondrial DNA polymerase has been implicated as the primary cause underlying many of the toxic side effects of these drugs in HIV therapy. Recent success in reconstituting recombinant human enzyme has afforded a detailed mechanistic analysis of the reactions governing nucleotide selectivity of the polymerase and the proofreading exonuclease. The toxic side effects of nucleoside analogues are correlated with the kinetics of incorporation by the mitochondrial DNA polymerase, varying over 6 orders of magnitude in the sequence zalcitabine (ddC) > didanosine (ddI metabolized to ddA) > stavudine (d4T) > lamivudine (3TC) > tenofovir (PMPA) > zidovudine (AZT) > abacavir (metabolized to carbovir, CBV). In this review, we summarize our current efforts to examine the mechanistic basis for nucleotide selectivity by the mitochondrial DNA polymerase and its role in mitochondrial toxicity of nucleoside analogues used to treat AIDS and other viral infections. We will also discuss the promise and underlying challenges for the development of new analogues with lower toxicity.  相似文献   

4.
Although antiviral nucleoside analog therapy successfully delays progression of HIV infection to AIDS, these drugs cause unwelcome side-effects by inducing mitochondrial toxicity. We and others have demonstrated that the mitochondrial polymerase, DNA polymerase gamma (pol gamma), participates in mitochondrial toxicity by incorporating these chain-terminating antiviral nucleotide analogs into DNA. Here, we explore the role of three highly conserved amino acid residues in the active site of human pol gamma that modulate selection of nucleotide analogs as substrates for incorporation. Sequence alignments, crystal structures and mutagenesis studies of family A DNA polymerases led us to change Tyr951 and Tyr955 in polymerase motif B to Phe and Ala, and Glu895 in polymerase motif A was changed to Ala. The mutant polymerases were tested for their ability to incorporate natural nucleotides and the five antiviral nucleoside analogs currently approved for antiviral therapy: AZT, ddC, D4T, 3TC and carbovir. Steady-state kinetic analysis of the pol gamma derivatives with the normal and antiviral nucleotides demonstrated that Tyr951 is largely responsible for the ability of pol gamma to incorporate dideoxynucleotides and D4T-MP. Mutation of Tyr951 to Phe renders the enzyme resistant to dideoxynucleotides and D4T-TP without compromising the activity of the polymerase. Alteration of Glu895 and Tyr955 to Ala had the largest effect on overall polymerase activity with normal nucleotides, producing dramatic increases in K(m(dNTP)) and large decreases in k(cat). Mutation of Tyr955 in pol gamma causes the degenerative disease progressive external ophthalmoplegia in humans, and we show that this residue partially accounts for the ability of pol gamma to incorporate D4T-MP and carbovir. Alteration of Glu895 to Ala slightly increased discrimination against dideoxynucleotides and D4T-TP. The mechanisms by which pol gamma selects certain nucleotide analogs are discussed.  相似文献   

5.
NRTI-based therapy used to treat AIDS can cause mitochondrial toxicity resulting from the incorporation of NRTIs into mitochondrial DNA by DNA polymerase gamma (pol gamma). Pol gamma has poor discrimination against many of the currently used NRTIs resulting in aborted DNA synthesis and subsequent depletion of mtDNA. Pol gamma readily incorporates ddCTP, ddITP and D4T-TP with an efficiency similar to the incorporation of normal nucleotides, whereas AZT-TP, CBV-TP, 3TC-TP and PMPApp act as moderate inhibitors to DNA synthesis. We have sought a structural explanation for the unique selection for NRTIs by the human pol gamma. A structural model of the human pol gamma was developed to ascertain the role of active site amino acids. One residue in particular, Y951 in motif B, is primarily responsible for the selection of dideoxynucleotides and D4T-TP. Our structural model of the human pol gamma should assist in rational design of antiviral nucleoside analogs with higher specificity for HIV-RT and minimal selection and incorporation into mitochondrial DNA.  相似文献   

6.
Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs'' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication.  相似文献   

7.
Mitochondrial DNA polymerase gamma (Pol γ) is the sole polymerase responsible for replication of the mitochondrial genome. The study of human Pol γ is of key importance to clinically relevant issues such as nucleoside analog toxicity and mitochondrial disorders such as progressive external ophthalmoplegia. The development of a recombinant form of the human Pol γ holoenzyme provided an essential tool in understanding the mechanism of these clinically relevant phenomena using kinetic methodologies. This review will provide a brief history on the discovery and characterization of human mitochondrial DNA polymerase γ, focusing on kinetic analyses of the polymerase and mechanistic data illustrating structure–function relationships to explain drug toxicity and mitochondrial disease.  相似文献   

8.
Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.  相似文献   

9.
2 ',3 '-dideoxycytidine (ddC) is a nucleoside analog that has been shown to produce a delayed toxicity which may be due to the depletion of mitochondrial DNA (mtDNA). In order to gain further understanding of the events involved in mitochondrial toxicity, two different CEM cell lines were selected for resistance to the delayed ddC toxicity.  相似文献   

10.
2 ′,3 ′-dideoxycytidine (ddC) is a nucleoside analog that has been shown to produce a delayed toxicity which may be due to the depletion of mitochondrial DNA (mtDNA). In order to gain further understanding of the events involved in mitochondrial toxicity, two different CEM cell lines were selected for resistance to the delayed ddC toxicity.  相似文献   

11.
Fluoropyrimidines are useful anticancer agents and the compound 5-fluoro-2'-deoxyuridine (FdUrd) plays an important role in chemotherapy of colon cancers. Several nucleoside analogs, such as 3'-azido-2',3'-dideoxythymidine (AZT) and 2',3'-dideoxycytidine (ddC), can be incorporated into and cause depletion of mitochondrial DNA (mtDNA). These drugs are known to cause mitochondrial toxicity after prolonged treatment in patients. In this study we demonstrate that FdUrd reduces the mtDNA content and the expression level of the mtDNA encoded cytochrome c oxidase (COX II) in a CEM T-lymphoblastic cell line.  相似文献   

12.
2',3'-Dideoxy-3'-thiacytidine (+/-)-SddC) was found to have potent activity against human hepatitis B virus as well as human immunodeficiency viruses in culture. The (-)form ((-)-SddC) which is resistant to deoxycytidine deaminase was found to be the more active antiviral stereoisomer than the (+)-form ((+)-SddC). The (+)-SddC is susceptible to deamination by deoxycytidine deaminase and is 25- and 12-fold more toxic than (-)-SddC in CEM cells in terms of anti-cell growth and anti-mitochondrial DNA synthesis, respectively. Similar results were obtained using a mixture of their 5-fluoro analogs ((+/-)-FSddC). Unlike 2',3'-dideoxycytidine, which is a potent inhibitor of mitochondrial DNA synthesis and results in such delayed toxicity as peripheral neuropathy with long term usage, (-)-SddC does not affect mitochondrial DNA synthesis. The (-)form is phosphorylated to (-)-SddCMP and is subsequently converted to (-)-SddCDP and (-)-SddCTP. One additional major metabolite which has been tentatively assigned the name "(-)-SddCMP sialate" was also identified. No significant difference in terms of the profiles of the metabolites was found between 4 and 24 h. There is an appreciable amount of (-)-SddCTP detectable 24 h after removal of the drug. (-)-SddCTP was also found to be approximately 3-fold more potent than (+)-SddCTP in inhibiting human hepatitis B virus DNA polymerase. This is the first nucleoside analog with the unnatural sugar configuration demonstrated to have antiviral activity.  相似文献   

13.
Fluoropyrimidines are useful anticancer agents and the compound 5‐fluoro‐2′‐deoxyuridine (FdUrd) plays an important role in chemotherapy of colon cancers. Several nucleoside analogs, such as 3′‐azido‐2′,3′‐dideoxythymidine (AZT) and 2′,3′‐dideoxycytidine (ddC), can be incorporated into and cause depletion of mitochondrial DNA (mtDNA). These drugs are known to cause mitochondrial toxicity after prolonged treatment in patients. In this study we demonstrate that FdUrd reduces the mtDNA content and the expression level of the mtDNA encoded cytochrome c oxidase (COX II) in a CEM T‐lymphoblastic cell line.  相似文献   

14.
Progressive external ophthalmoplegia (PEO) is a heritable mitochondrial disorder characterized by the accumulation of multiple point mutations and large deletions in mtDNA. Autosomal dominant PEO was recently shown to co-segregate with a heterozygous Y955C mutation in the human gene encoding the sole mitochondrial DNA polymerase, DNA polymerase gamma (pol gamma). Since Tyr-955 is a highly conserved residue critical for nucleotide recognition among family A DNA polymerases, we analyzed the effects of the Y955C mutation on the kinetics and fidelity of DNA synthesis by the purified human mutant polymerase in complex with its accessory subunit. The Y955C enzyme retains a wild-type catalytic rate (k(cat)) but suffers a 45-fold decrease in apparent binding affinity for the incoming nucleoside triphosphate (K(m)). The Y955C derivative is 2-fold less accurate for base pair substitutions than wild-type pol gamma despite the action of intrinsic exonucleolytic proofreading. The full mutator effect of the Y955C substitution was revealed by genetic inactivation of the exonuclease, and error rates for certain mismatches were elevated by 10-100-fold. The error-prone DNA synthesis observed for the Y955C pol gamma is consistent with the accumulation of mtDNA mutations in patients with PEO.  相似文献   

15.
Bacteriophage RB69 encodes a replicative B-family DNA polymerase (RB69 gp43) with an associated proofreading 3' exonuclease. Crystal structures have been determined for this enzyme with and without DNA substrates. We previously described the mutation rates and kinds of mutations produced in vivo by the wild-type (Pol(+) Exo(+)) enzyme, an exonuclease-deficient mutator variant (Pol(+) Exo(-)), mutator variants with substitutions at Tyr(567) in the polymerase active site (Pol(M) Exo(+)), and the double mutator Pol(M) Exo(-). Comparing the mutational spectra of the Pol(+) Exo(-) and Pol(+) Exo(+) enzymes revealed the patterns and efficiencies of proofreading, while Tyr(567) was identified as an important determinant of base-selection fidelity. Here, we sought to determine how well the fidelities of the same enzymes are reflected in vitro. Compared to their behavior in vivo, the three mutator polymerases exhibited modestly higher mutation rates in vitro and their mutational predilections were also somewhat different. Although the RB69 gp43 accessory proteins exerted little or no effect on total mutation rates in vitro, they strongly affected mutation rates at many specific sites, increasing some rates and decreasing others.  相似文献   

16.
17.
Samuels DC 《IUBMB life》2006,58(7):403-408
AZT remains an important drug to combat HIV infection in combination with other nucleoside analogs. However, long-term treatment with nucleoside analogs can result in mitochondrial toxicity, which can be fatal in some forms. We review the metabolic pathway for AZT transport and phosphorylation within mitochondria and its interaction with the mitochondrial DNA polymerase, Pol-gamma. Suggested mechanisms for the mitochondrial toxicity of AZT related to this metabolism are discussed. Finally we review recent evidence that the HIV virus itself is involved in the toxicity of AZT.  相似文献   

18.
The mitochondrial DNA polymerase of HeLa cells was purified 18,000-fold to near homogeneity. The purified polymerase cofractionated with two polypeptides that had molecular mass of 140 and 54 kDa. The 140-kDa subunit was specifically radiolabeled in a photoaffinity cross-linking assay and is most likely the catalytic subunit of the mitochondrial DNA polymerase. The purified enzyme exhibited properties that have been attributed to DNA polymerase gamma and shows a preference for replicating primed poly(pyrimidine) DNA templates in the presence of 0.5 mM MgCl2. As in the case of mitochondrial DNA polymerases from other animal cells, human DNA polymerase gamma cofractionated with a 3'----5' exonuclease activity. However, it has not been possible to determine if the two enzymatic activities reside in the same polypeptide. The exonuclease activity preferentially removes mismatched nucleotides from the 3' end of a duplex DNA and is not active toward DNA with matched 3' ends. These properties are consistent with the notion that the exonuclease activity plays a proofreading function in the replication of the organelle genome.  相似文献   

19.
Gemcitabine, 2'-deoxy-2', 2'-difluorocytidine (dFdC), is a drug approved for use against various solid tumors. Clinically, this moderately toxic nucleoside analog causes peripheral neuropathy, hematological dysfunction, and pulmonary toxicity in cancer patients. Although these side effects closely mimic symptoms of mitochondrial dysfunction, there is no direct evidence to show gemcitabine interferes with mitochondrial DNA replication catalyzed by human DNA polymerase gamma. Here we employed presteady state kinetic methods to directly investigate the incorporation of the 5'-triphosphorylated form of gemcitabine (dFdCTP), the excision of the incorporated monophosphorylated form (dFdCMP), and the bypass of template base dFdC catalyzed by human DNA polymerase gamma. Opposite template base dG, dFdCTP was incorporated with a 432-fold lower efficiency than dCTP. Although dFdC is not a chain terminator, the incorporated dFdCMP decreased the incorporation efficiency of the next 2 correct nucleotides by 214- and 7-fold, respectively. Moreover, the primer 3'-dFdCMP was excised with a 50-fold slower rate than the matched 3'-dCMP. When dFdC was encountered as a template base, DNA polymerase gamma paused at the lesion and one downstream position but eventually elongated the primer to full-length product. These pauses were because of a 1,000-fold decrease in nucleotide incorporation efficiency. Interestingly, the polymerase fidelity at these pause sites decreased by 2 orders of magnitude. Thus, our pre-steady state kinetic studies provide direct evidence demonstrating the inhibitory effect of gemcitabine on the activity of human mitochondrial DNA polymerase.  相似文献   

20.
The catalytic subunit (alpha) of mitochondrial DNA polymerase (pol gamma) shares conserved DNA polymerase and 3'-5' exonuclease active site motifs with Escherichia coli DNA polymerase I and bacteriophage T7 DNA polymerase. A major difference between the prokaryotic and mitochondrial proteins is the size and sequence of the region between the exonuclease and DNA polymerase domains, referred to as the spacer in pol gamma-alpha. Four gamma-specific conserved sequence elements are located within the spacer region of the catalytic subunit in eukaryotic species from yeast to humans. To elucidate the functional roles of the spacer region, we pursued deletion and site-directed mutagenesis of Drosophila pol gamma. Mutant proteins were expressed from baculovirus constructs in insect cells, purified to near homogeneity, and analyzed biochemically. We find that mutations in three of the four conserved sequence elements within the spacer alter enzyme activity, processivity, and/or DNA binding affinity. In addition, several mutations affect differentially DNA polymerase and exonuclease activity and/or functional interactions with mitochondrial single-stranded DNA-binding protein. Based on these results and crystallographic evidence showing that the template-primer binds in a cleft between the exonuclease and DNA polymerase domains in family A DNA polymerases, we propose that conserved sequences within the spacer of pol gamma may position the substrate with respect to the enzyme catalytic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号