首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serotonin, a putative neurotransmitter in insects, was found to cause consistent phase shifts of the circadian rhythm of locomotor activity of the cockroach Leucophaea maderae when administered during the early subjective night as a series of 4-microliters pulses (one every 15 min) for either 3 or 6 hr. Six-hour treatments with dopamine also caused significant phase shifts during the early subjective night, but 3-hr treatments with dopamine had no phase-shifting effect. Other substances tested in early subjective night (norepinephrine, octopamine, gamma-aminobutyric acid, glutamate, carbachol, histamine, tryptophan, tryptamine, N-acetyl serotonin, or 5-hydroxyindole-3-acetic acid) did not consistently cause phase shifts. The phase-shifting effect of serotonin was found to be phase-dependent. The phase response curve (PRC) for serotonin treatments was different from the PRC for light. Like light, serotonin caused phase delays in the late subjective day and early subjective night, but serotonin did not phase-shift rhythms when tested at phases where light causes phase advances.  相似文献   

2.
According to the Aschoff's role, exposure to continuous light (LL) results in the elongation of the free-running period of the rat circadian rhythm. However, the LL may not always mean the constant intensity of the light for the suprachiasmatic nucleus, since the rat may regulate the contrast of the illumination by their eyelids which are closed during the sleep phase. In this study, the surgical removal of the eyelids under the LL caused arrhythmicity of the locomotor activity in 7 of 10 rats. The remaining 3 rats maintained the free-running rhythm after the removal of the eyelids. These results suggest that constant light may affect the free-running rhythm of the rat with or without eyelids in the different manner.  相似文献   

3.
Short-term (1-3 days) constant light exposure (brief LL) potentiates nonphotic phase shifting induced by sleep deprivation and serotonin (5-HT) agonist stimulation. The present assessments reveal that exposure to brief LL markedly alters the magnitude and shape of the 5-HT1A,7 receptor agonist, 8-(+)2-dipropyl-amino-8-hydroxyl-1,2,3,4-tetrahyronapthalene (8-OH-DPAT) phase-response curve, facilitating (approximately 12 h) phase-advance shifts during the early morning when serotonergics have no phase-shifting effect. Brief LL also reduces the threshold for 8-OH-DPAT shifting at midday, evidenced by 5- to 6-h phase-advance shifts elicited by dosages that have no effect without the LL treatment. The brief LL-potentiated phase advances to intraperitoneal 8-OH-DPAT at zeitgeber time 0 (ZT 0) were blocked by the 5-HT1A antagonists, pindolol and WAY 100635, indicating that this shifting is mediated by 5-HT1A receptors. Antagonists with action at 5-HT7 receptors, including ritanserin and metergoline, were without effect. Although autoradiographic analyses of [3H]8-OH-DPAT binding indicate that brief LL does not upregulate suprachiasmatic nucleus (SCN) 5-HT1A receptor binding, intra-SCN microinjection of 8-OH-DPAT at ZT 0 in brief LL-exposed hamsters induced shifts similar to those produced by intraperitoneal injection, suggesting that SCN 5-HT1A receptors mediate potentiated 8-OH-DPAT-induced shifts during the early morning. Lack of shifting by intra-SCN 8-OH-DPAT at ZT 6 or 18 (when intraperitoneal 8-OH-DPAT induces large shifts), further indicates that brief LL-potentiated shifts at these time points are mediated by 5-HT target(s) outside the SCN. Significantly, sleep deprivation-induced phase-advance shifts potentiated by brief LL (approximately 9 h) at ZT 0 were blocked by pindolol, suggesting that these behavioral shifts could be mediated by the same SCN 5-HT1A receptor phase-resetting pathway as that activated by 8-OH-DPAT treatment.  相似文献   

4.
5.
6.
We previously reported that early night peripheral bacterial lipopolysaccharide (LPS) injection produces phase delays in the circadian rhythm of locomotor activity in mice. We now assess the effects of proinflammatory cytokines on circadian physiology, including their role in LPS-induced phase shifts. First, we investigated whether differential systemic induction of classic proinflammatory cytokines could explain the time-specific behavioral effects of peripheral LPS. Induction levels for plasma interleukin (IL)-1α, IL-1β, IL-6, or tumor necrosis factor (TNF)-α did not differ between animals receiving a LPS challenge in the early day or early night. We next tested the in vivo effects of central proinflammatory cytokines on circadian physiology. We found that intracerebroventricular (i.c.v.) delivery of TNF-α or interleukin IL-1β induced phase delays on wheel-running activity rhythms. Furthermore, we analyzed if these cytokines mediate the LPS-induced phase shifts and found that i.c.v. administration of soluble TNF-α receptor (but not an IL-1β antagonistic) prior to LPS stimulation inhibited the phase delays. Our work suggests that the suprachiasmatic nucleus (SCN) responds to central proinflammatory cytokines in vivo, producing phase shifts in locomotor activity rhythms. Moreover, we show that the LPS-induced phase delays are mediated through the action of TNF-α at the central level, and that systemic induction of proinflammatory cytokines might be necessary, but not sufficient, for this behavioral outcome.  相似文献   

7.
M Gaweda 《Folia biologica》1998,46(3-4):203-213
Carbachol chronically and peripherally administered, depending on the circadian time, caused a phase shift in the free-running locomotor activity rhythm, resynchronized the rhythm, or had a masking effect of this rhythm in mice. In the discussion it is stressed that the drug affects the rhythmicity of this activity, probably by acting on the mechanism of suprachiasmatic nuclei.  相似文献   

8.
Running wheels are widely used in studies on biological rhythms. In mice wheel diameters have ranged from 11 cm to 23 cm. We provided mice with running wheels of two different sizes: 15 cm diameter and 11 cm diameter. The amount of running in the 12-h light:12-h dark condition and the endogenous period of wheel running in constant darkness was determined over 40 days. On the 1st day in constant darkness all animals were exposed to a 15-min light pulse at circadian time 13. The animals in the small wheel ran significantly less both in 12 h light: 12 h dark and constant darkness, and showed a longer endogenous period in constant darkness compared to animals in the large wheel. Moreover, after the light pulse at circadian time 13, mice in the small wheel showed a significantly smaller phase delay in running wheel activity than mice in the larger wheels. The data suggest that the magnitude of a photic phase shift depends on the amount and timing of activity the animals display in relation to this stimulus. It can be concluded that technical features of the running wheel can influence the circadian period of wheel running.  相似文献   

9.
Abstract. Females of the blowfly, Calliphora vicina , showed an increase in the free-running period (γ) of their locomotor activity rhythm when transferred from continuous darkness (DD) to continuous 'dim' light (LL) at an irradiance below about 0.03 Wm-2. Transfer to LL of this intensity also caused a reduction in the duration of the active phase (α) of the cycle. Transfer to 'bright' light (>0.03 Wm2), however, lead to arrhythmicity. Data suggest that constant light of this intensity does not 'stop' the circadian pacemaker but imposes behavioural arrhythmicity at a more superficial level.  相似文献   

10.
A detailed analysis was made of the locomotor activity of Acheta domesticus under conditions of 12 hr light and 12 hr darkness (LD 12 : 12) and of continuous darkness (DD). Under LD 12 : 12 it was found that there are three types of insects: (1) those beginning the period of increased locomotor activity immediately after darkness falls, (2) considerably before this time, and (3) considerably after this time. Under DD conditions the greater amount of the insects have a free-running rhythm shorter than 24 hr, while only a small percentage have a rhythm of more than 24 hr.Destruction of the neurosecretory cells of the pars intercerebralis by means of radio waves leads to the formation of hyperactivity and loss of locomotor activity rhythm when more than half of these cells are destroyed.Injection of reserpine into the insect's haemolymph with doses of 10 μg/g of body weight results in a reduction in locomotor activity and produces arrhythmicity for 2 to 3 days under LD 12 : 12 conditions. Under DD conditions, however, this same dose results in a total and irretrievable loss of free-running rhythm. Histological studies of the brain of crickets following injection of reserpine show a large degree of accumulation of neurosecretion in the cells of the pars intercerebralis as compared with control insects.A hypothesis is put forward as to the way in which the brain centres regulating locomotor rhythm act in crickets.  相似文献   

11.
12.
Summary Japanese quail have a circadian rhythm of locomotor activity whose free-run period () in constant darkness (DD) was 22.5±0.1 h (45). A phase response curve of typical form was obtained by illuminating the free-running rhythm with single 1 h light pulses. Using entrainment theory a derived phase response curve was calculated from the phase relationships between the locomotor rhythm and 1 h light periods in light-dark cycles of various lengths (T). Although the limits of entrainment to theseT cycles differed slightly from those predicted, there was a close correlation between the two phase response curves. The phase relationships between the locomotor rhythm and 1–9 h photoperiods in 24 h cycles were in general accord with a prediction based on the short free-run period and the relative sizes of the delay and advance portions of the phase response curve for 1 h light pulses.  相似文献   

13.
Animals of the amphipod Orchestia montagui are kept in constant darkness with two short light pulses. One pulse is applied at the beginning of subjective night (around the dusk) and the other one at the end of subjective night (around the dawn). The pulse duration is estimated in the order of one or two hours around the dusk as well as the dawn. The locomotor activity rhythm was monitored in individual animals in summer under constant temperature. Results revealed that whatever the experimental conditions, under continuous or interrupted darkness by pulses, two endogenous components have been highlighted. In fact, Periodogram analysis showed the presence of ultradian and circadian periods around 12 and 24 h, respectively. The shortest circadian period and the most important inter-individual variability was observed under pulse of 2 h around the dusk with mean value equal to τDD+pulse = 24h38′ ± 4h34′. The activity profiles are in majority unimodal. Moreover, the most activity peak showed a slipping of its location from the middle of subjective night under constant darkness to the middle of subjective day under pulse. Globally, the locomotor activity rhythm of O. montagui was better defined under pulses and specimens were significantly more active under continuous darkness. Moreover, a great variability around the activity time was observed especially with pulse of 1 h.  相似文献   

14.
Melatonin and wheel-running rhythmicity and the effects of acute and chronic light pulses on these rhythms were studied in Clock(Delta19) mutant mice selectively bred to synthesize melatonin. Homozygous melatonin-proficient Clock(Delta19) mutant mice (Clock(Delta19/Delta19)-MEL) produced melatonin rhythmically, with peak production 2 h later than the wild-type controls (i.e., just before lights on). By contrast, the time of onset of wheel-running activity occurred within a 20-min period around lights off, irrespective of the genotype. Melatonin production in the mutants spontaneously decreased within 1 h of the expected time of lights on. On placement of the mice in continuous darkness, the melatonin rhythm persisted, and the peak occurred 2 h later in each cycle over the first two cycles, consistent with the endogenous period of the mutant. This contrasted with the onset of wheel-running activity, which did not shift for several days in constant darkness. A light pulse around the time of expected lights on followed by constant darkness reduced the expected 2-h delay of the melatonin peak of the mutants to approximately 1 h and advanced the time of the melatonin peak in the wild-type mice. When the Clock(Delta19/Delta19)-MEL mice were maintained in a skeleton photoperiod of daily 15-min light pulses, a higher proportion entrained to the schedule (57%) than melatonin-deficient mutants (9%). These results provide compelling evidence that mice with the Clock(Delta19) mutation express essentially normal rhythmicity, albeit with an underlying endogenous period of 26-27 h, and they can be entrained by brief exposure to light. They also raise important questions about the role of Clock in rhythmicity and the usefulness of monitoring behavioral rhythms compared with hormonal rhythms.  相似文献   

15.
As compared with sham operated animals, an increase in night and daytime locomotion and a shift of the acrophase of the circadian locomotor rhythm to earlier night hours were observed in pinealectomized rats. A reorganization of the rhythm spectral characteristics took place with increase in the share of ultradian waves (14-20 h) and decrease in the number of short periodic (2-5 h) fluctuations.  相似文献   

16.
Abstract Circadian rhythm in newly emerged individuals of the Red Squirrel ( Scuirus vulgaris ) flea C.s. sciurorum was studied in a constant environment, using an insect activity monitor. Trials were run over 7 days using two start times (08.00 and 17.00 hours). The results show that, regardless of start time, the fleas display a 24 h activity rhythm. The presence of a rhythm under constant conditions gives a strong indication that C. s.sciurorum has a self-sustaining clock which is started by disturbance and is most likely to be linked to host activity patterns.  相似文献   

17.
Summary The circadian rhythm of wheel running behavior was observed to dissociate into two distinct components (i.e. split) within 30 to 110 days in 56% of male hamsters exposed to constant light (Figs. 1–2). Splitting was abolished in all 16 animals that were transferred from constant light (LL) to constant darkness (DD) within 1–4 days of DD, and the components of the re-fused activity rhythm assumed a phase relationship that is characteristic of hamsters maintained in DD (Figs. 3–5). Re-fusion of the split activity rhythm was accompanied by a change in period (); in 14 animals increased while in the other 2 animals decreased after transfer to DD.After 10–30 days in DD, the hamsters were transferred back into LL at various time points throughout the circadian cycle. A few of these animals went through two or three LL to DD to LL transitions. The effect of re-exposure to LL was dependent on the phase relationship between the transition into LL and the activity rhythm. A rapid (i.e. 1–4 days) induction of splitting was observed in 7 of 9 cases when hamsters were transferred into LL 4–5 h after the onset of activity (Fig. 5). In the other 2 animals, the activity pattern was ultradian or aperiodic for 20 to 50 days before eventually coalescing into a split activity pattern. In contrast, transfer of animals (n = 13) from DD to LL at other circadian times did not result in the rapid induction of splitting and the activity rhythm continued to free-run with a single bout of activity (Fig. 5). Importantly, a transfer from DD to LL 4–5 h after the onset of activity did not induce splitting if the hamsters had not shown a split activity rhythm during a previous exposure to LL (n=10; Fig. 6).These studies indicate that transfer of split hamsters from LL to DD results in the rapid re-establishment of the normal phase relationship between the two circadian oscillators which underlie the two components of activity during splitting. In addition, there appears to be a history-dependent effect of splitting which renders the circadian system susceptible to becoming split again. The rapid re-initiation of the split condition upon transfer from DD to LL at only a specific circadian time is discussed in terms of the phase response curve for this species.Abbreviation PRC phase response curve This investigation was supported by NIH grants HD-09885 and HD-12622 from the National Institute of Child Health and Human Development and by a grant from the Whitehall FoundationRecipient of Research Career Development Award K04 HD-00249 from the National Institute of Child Health and Human Development  相似文献   

18.
19.
We examined whether melatonin can act as a synchronizing agent within the circadian system of amphibians by testing the ability of melatonin injections to entrain the circadian locomotor activity rhythm of a newt (Cynops pyrrhogaster). Under constant darkness, all newts (13 cases) showing the free-running rhythms were subcutaneously injected with 10 g melatonin at the same time every other day for at least 30 days. Subsequently, they were injected with vehicle (1% ethanolic saline) instead of melatonin for at least another 30 days. In 10 of the 13 newts, the locomotor activity rhythms could be entrained to a period of 24 h by melatonin injections but not by vehicle injections. During the entrained steady-state, the active phase of an activity-rest cycle preceded the time of melatonin injections as previously reported in other diurnal species. These results suggest that the endogenous circadian rhythm of melatonin concentration may be involved in synchronizing circadian oscillator(s) within the newt's circadian system.  相似文献   

20.
Night shift work is associated with a myriad of health and safety risks. Phase-shifting the circadian clock such that it is more aligned with night work and day sleep is one way to attenuate these risks. However, workers will not be satisfied with complete adaptation to night work if it leaves them misaligned during days off. Therefore, the goal of this set of studies is to produce a compromise phase position in which individuals working night shifts delay their circadian clocks to a position that is more compatible with nighttime work and daytime sleep yet is not incompatible with late nighttime sleep on days off. This is the first in the set of studies describing the magnitude of circadian phase delays that occurs on progressively later days within a series of night shifts interspersed with days off. The series will be ended on various days in order to take a "snapshot" of circadian phase. In this set of studies, subjects sleep from 23:00 to 7:00 h for three weeks. Following this baseline period, there is a series of night shifts (23:00 to 07:00 h) and days off. Experimental subjects receive five 15 min intermittent bright light pulses (approximately 3500 lux; approximately 1100 microW/cm2) once per hour during the night shifts, wear sunglasses that attenuate all visible wavelengths--especially short wavelengths ("blue-blockers")--while traveling home after the shifts, and sleep in the dark (08:30-15:30 h) after each night shift. Control subjects remain in typical dim room light (<50 lux) throughout the night shift, wear sunglasses that do not attenuate as much light, and sleep whenever they want after the night shifts. Circadian phase is determined from the circadian rhythm of melatonin collected during a dim light phase assessment at the beginning and end of each study. The sleepiest time of day, approximated by the body temperature minimum (Tmin), is estimated by adding 7 h to the dim light melatonin onset. In this first study, circadian phase was measured after two night shifts and day sleep periods. The Tmin of the experimental subjects (n=11) was 04:24+/-0.8 h (mean+/-SD) at baseline and 7:36+/-1.4 h after the night shifts. Thus, after two night shifts, the Tmin had not yet delayed into the daytime sleep period, which began at 08:30 h. The Tmin of the control subjects (n=12) was 04:00+/-1.2 h at baseline and drifted to 4:36+/-1.4 h after the night shifts. Thus, two night shifts with a practical pattern of intermittent bright light, the wearing of sunglasses on the way home from night shifts, and a regular sleep period early in the daytime, phase delayed the circadian clock toward the desired compromise phase position for permanent night shift workers. Additional night shifts with bright light pulses and daytime sleep in the dark are expected to displace the sleepiest time of day into the daytime sleep period, improving both nighttime alertness and daytime sleep but not precluding adequate sleep on days off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号