首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Familial juvenile nephronophthisis (NPH) is an autosomal recessive kidney disease that leads to end-stage renal failure in adolescence and is associated with the formation of cysts at the cortico-medullary junction of the kidneys. NPH is responsible for about 15% of end-stage renal disease in children, as shown by Kleinknecht and Habib. NPH in combination with autosomal recessive retinitis pigmentosa is known as the Senior-Løken syndrome (SLS) and exhibits renal pathology that is identical to NPH. We had excluded 40% of the human genome from linkage with a disease locus for NPH or SLS when antignac et al. first demonstrated linkage for an NPH locus on chromosome 2. We present confirmation of linkage of an NPH locus to microsatellite markers on chromosome 2 in nine families with NPH. By linkage analysis with marker AFM262xb5 at locus D2S176, a maximum lod score of 5.05 at a θmax = .03 was obtained. In a large NPH family that yielded at D2S176 a maximum lod score of 2.66 at θmax = .0, markers AFM172xc3 and AFM016yc5, representing loci D2S135 and D2S110, respectively, were identified as flanking markers, thereby defining the interval for an NPH locus to a region of approximately 15 cM. Furthermore, the cytogenetic assignment of the NPH region was specified to 2p12-(2q13 or adjacent bands) by calculation of linkage between these flanking markers and markers with known unique cytogenetic assignment. The refined map may serve as a genetic framework for additional genetic and physical mapping of the region.  相似文献   

2.
In mice, the recessive, non-pleiotropic, juvenile spermatogonial depletion (jsd) mutation results in a single wave of spermatogenesis, followed by failure of type A spermatogonial stem cells to differentiate, rendering adult males sterile. As part of an effort to identify the gene underlying this mutation, we report here the construction of a high-resolution genetic map involving more than 1000 meioses and 24 polymorphic loci. Our data define a critical jsd interval of approximately 0.4 cM at 49 cM on mouse chromosome 1, between D1Mit215 and 257SP6. We have constructed a physical map spanning the region comprising 24 overlapping BACs. Eighteen of these BACs have been fully sequenced, or are in draft form, allowing us to annotate approximately 2.5 Mb of DNA surrounding the jsd locus. The critical 0.4 cM jsd interval corresponds to a physical distance of approximately 1.5 Mb. Eight genes have been identified in this interval, two of which appear to be possible candidates for the jsd mutation.  相似文献   

3.
The sunn mutation of Medicago truncatula is a single-gene mutation that confers a novel supernodulation phenotype in response to inoculation with Sinorhizobium meliloti. We took advantage of the publicly available codominant PCR markers, the high-density genetic map, and a linked cytogenetic map to define the physical and genetic region containing sunn. We determined that sunn is located at the bottom of linkage group 4, where a fine-structure genetic map was used to place the locus within a approximately 400-kb contig of bacterial artificial chromosome (BAC) clones. Genetic analyses of the sunn contig, as well as of a second, closely linked BAC contig designated NUM1, indicate that the physical to genetic distance within this chromosome region is in the range of 1000 -1100 kb.cM-1. The ratio of genetic to cytogenetic distance determined across the entire region is 0.3 cM.microm(-1). These estimates are in good agreement with the empirically determined value of approximately 300 kb.microm(-1) measured for the NUM1 contig. The assignment of sunn to a defined physical interval should provide a basis for sequencing and ultimately cloning the responsible gene.  相似文献   

4.
Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.  相似文献   

5.
Stargardt disease (STGD) and fundus flavimaculatus are infrequent autosomal recessive conditions characterized by a juvenile macular dystrophy and variable degrees of peripheral retinal changes. Linkage analysis performed in 47 STGD/fundus flavimaculatus families demonstrated significant linkage to 13 polymorphic DNA markers on chromosome 1p. The maximum combined two-point lod score was 32.7 (maximum recombination fraction [phi max] = .006) with the polymorphic marker D1S188. Our data demonstrate that STGD and fundus flavimaculatus are the same disorder clinically and genetically and provide further evidence for genetic homogeneity of this phenotype. Analysis of recombination events on disease chromosomes placed the STGD gene within a 4-cM interval between markers D1S435 and D1S236. A physical map was constructed of a YAC contig flanking STGD, from markers D1S500 to D1S495, and includes the critical interval delineated by historical recombinants. This contig spans approximately 31 cM, with one gap (3-5 cM) that is outside the 4-cM critical region. Localization of STGD to a single YAC contig will facilitate its positional cloning.  相似文献   

6.
Abstract Abscission is a universal process whereby plants shed their organs, such as flowers, fruit and leaves. In tomato, the non-allelic mutations jointless and jointless-2 have been discovered as recessive mutations that completely suppress the formation of pedicel abscission zones. A high resolution genetic map of jointless-2 was constructed using 1,122 jointless F2 plants. Restriction fragment length polymorphism (RFLP) marker RPD140 completely co-segregated with the jointless-2 locus and mapped in a 2.4 cM interval between RFLP markers CD22 and TG618. To chromosome walk to jointless-2, all three markers were used to screen a bacterial artificial chromosome (BAC) library and contigs were developed. Intensive efforts to expand and merge the BAC contigs were unsuccessful because of the highly repetitive sequence content on the distal ends of each contig. To determine the physical distance between and the orientation of the three contigs, we used high resolution pachytene fluorescence in situ hybridization (FISH) mapping. The RPD140 contig was positioned in the centromeric region of chromosome 12 between two large pericentric heterochromatin blocks, about 50 Mb from the TG618 contig on the short arm and 10 Mb from the CD22 contig on the long arm, respectively. Based on high resolution genetic and physical mapping, we conclude that the jointless-2 gene is located within or near the chromosome 12 centromere where 1 cM is approximately 25 Mb in length.Communicated by Q. ZhangM.A. Budiman, S-B. Chang and S. Lee contributed equally to the work.  相似文献   

7.
Fine-scale molecular mapping has been conducted using 183 recombinants between the markers lutescens ( lu; 17.6 cM) and transparent testa glabra ( ttg; 35.5 cM) on the top arm of Arabidopsis thaliana chromosome 5. This region contains a number of genes involved in floral development including Ms1 , a gene required for the post-meiotic development of pollen. In homozygous ms1 mutant plants, pollen development is aborted soon after microspore release, regardless of environmental conditions. The ms1 mutation is located at 29.8 ± 0.8 cM on chromosome 5. Markers have been identified which co-segregate with ms1 and should lie within 39 kb of the gene. The fine-scale map of the lu-ms1-ttg region that has been generated is significantly different from the published integrated map and provides substantially more accurate and higher marker density than the current recombinant inbred map for this region. Using clones derived from four yeast artificial chromosome libraries, a contig has been established between the RFLP markers 4111 and 4556, which encompasses the ms1 gene. This covers a genetic distance of 8.9 cM which corresponds to a physical distance of approximately 1.44 Mb, representing about 1.5–2.0% of the Arabidopsis genome. In this region, 1 cM represents a physical distance of approximately 160 kb.  相似文献   

8.
Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kbMluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7–4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted withNotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in theXbcd249.2-Xmwg068 interval and 0.465 Mb/cM in theXbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate theXbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than theXbcd249.2-Xmwg068 interval.  相似文献   

9.
Faris JD  Fellers JP  Brooks SA  Gill BS 《Genetics》2003,164(1):311-321
The Q locus played a major role in the domestication of wheat because it confers the free-threshing character and influences many other agronomically important traits. We constructed a physical contig spanning the Q locus using a Triticum monococcum BAC library. Three chromosome walking steps were performed by complete sequencing of BACs and identification of low-copy markers through similarity searches of database sequences. The BAC contig spans a physical distance of approximately 300 kb corresponding to a genetic distance of 0.9 cM. The physical map of T. monococcum had perfect colinearity with the genetic map of wheat chromosome arm 5AL. Recombination data in conjunction with analysis of fast neutron deletions confirmed that the contig spanned the Q locus. The Q gene was narrowed to a 100-kb segment, which contains an APETALA2 (AP2)-like gene that cosegregates with Q. AP2 is known to play a major role in controlling floral homeotic gene expression and thus is an excellent candidate for Q.  相似文献   

10.
11.
Stephan DA  Hoffman EP 《Genomics》1999,55(3):268-274
Rippling muscle disease (RMD) is an autosomal dominant disorder characterized by electrically silent, percussion-induced muscular contractions. We previously reported the localization of a gene for RMD to 1q41-q42 by genome-wide linkage analysis in a large family from Oregon. This RMD gene was initially found to be contained within a 12-cM interval with a maximum multipoint lod score of 3.56. A YAC/BAC contig was assembled by STS content mapping and database searches spanning the nonrecombinant interval containing the RMD gene (RMD1). The physical map, in conjunction with recent mapping information from various other sources, clarified the order of genetic markers in this region and necessitated redefinition of the RMD genetic interval by linkage analysis with the newly ordered markers. Polymorphisms that mapped to the YACs in this contig were genotyped in this family and used to provide statistical support for narrowing of the critical genetic interval to 3 cM, corresponding to a maximum possible physical distance of 4.0 Mb. In addition, recombination breakpoint mapping supported the evidence that RMD1 must reside within this interval between markers D1S446 and D1S2680. ESTs (82) were mapped to the YACs spanning the region known to contain the RMD1 gene, and of these, 9 become strong positional candidates. The physical and refined genetic maps of this RMD locus set the stage for isolation of the responsible gene and elucidation of a novel patho-mechanism of calcium homeostasis in skeletal muscle.  相似文献   

12.
The embryonic lethal phenotype observed when DDK females are crossed with males from other strains results from a deleterious interaction between the egg cytoplasm and the paternal pronucleus soon after fertilization. We have previously mapped the Om locus responsible for this phenotype, called the DDK syndrome, to an approximately 2-cM region of chromosome 11. Here, we report the generation of a physical map of 28 yeast and bacterial artificial chromosome clones encompassing the entire genetic interval containing the Om locus. This contig, spanning approximately 2 Mb, was used to map precisely genes and genetic markers of the region. We determined the maximum physical interval for Om to be 1400 kb. In addition, 11 members of the Scya gene family were found to be organized into two clusters at the borders of the Om region. Two other genes (Rad51l3 and Schlafen 2) and one EST (D11Wsu78e) were also mapped in the Om region. This integrated map provides support for the identification of additional candidate genes for the DDK syndrome.  相似文献   

13.
Nephronophthisis, an autosomal-recessive cystic kidney disease, is the most frequent monogenic cause for renal failure in childhood. Infantile and juvenile forms of nephronophthisis are known to originate from separate gene loci. We describe here a new disease form, adolescent nephronophthisis, that is clearly distinct by clinical and genetic findings. In a large, 340-member consanguineous Venezuelan kindred, clinical symptoms and renal pathology were evaluated. Onset of terminal renal failure was compared with that in a historical sample of juvenile nephronophthisis. Onset of terminal renal failure in adolescent nephronophthisis occurred significantly later (median age 19 years, quartile borders 16.0 and 25.0 years) than in juvenile nephronophthisis (median age 13.1 years, quartile borders 11.3 and 17.3 years; Wilcoxon test P=.0069). A total-genome scan of linkage analysis was conducted and evaluated by LOD score and total-genome haplotype analyses. A gene locus for adolescent nephronophthisis was localized to a region of homozygosity by descent, on chromosome 3q22, within a critical genetic interval of 2. 4 cM between flanking markers D3S1292 and D3S1238. The maximum LOD score for D3S1273 was 5.90 (maximum recombination fraction.035). This locus is different than that identified for juvenile nephronophthisis. These findings will have implications for diagnosis and genetic counseling in hereditary chronic renal failure and provide the basis for identification of the responsible gene.  相似文献   

14.
The PKHD1 (polycystic kidney and hepatic disease 1) gene responsible for autosomal recessive polycystic kidney disease has been mapped to 6p21.1-p12 to an approximately 1-cM interval flanked by the markers D6S1714/D6S243 and D6S1024. We have developed a sequence-ready BAC/PAC-based contig map of this region as the next step for the positional cloning of PKHD1. This contig comprising 52 clones spanning approximately 1 Mb was established by content mapping of 44 BAC/PAC-end-derived STSs, 3 known genetic markers, 5 YAC-end-derived STSs, 3 random STSs, 1 previously mapped gene, and 1 EST. The average depth per marker is 6.3 clones, and the average STS density is 20 kb. The genomic clone overlaps were confirmed by restriction fragment fingerprint analysis. A high-resolution BAC/PAC-based contig map is essential to the ultimate goal of identifying the PKHD1 gene.  相似文献   

15.
The Lp mouse mutant provides a model for the severe human neural tube defect (NTD), cranio-rachischisis. To identify the Lp gene, a positional cloning approach has been adopted. Previously, linkage analysis in a large intraspecific backcross was used to map the Lp locus to distal mouse chromosome 1. Here we report a detailed physical map of this region. The interval surrounding Lp has been cloned in a yeast artificial chromosome (YAC) contig consisting of 63 clones spanning approximately 3.2 Mb. Fifty sequence tagged sites (STSs) have been used to construct the contig and establish marker order across the interval. Based on the high level of conserved synteny between distal mouse chromosome 1 and human 1q21-q24, many of these STSs were designed from expressed sequences identified by cross-screening human and mouse databases of expressed sequence tags. Added to other known genes in the region, a total of 29 genes were located and ordered within the contig. Seven novel polymorphisms were identified within the region, allowing refinement of the genetic map and a reduction in the size of the physical interval containing the Lp gene. The Lp interval, between D1Mit113 and Tagln2, can be spanned by two nonchimeric overlapping YACs that define a physical distance of approximately 1 Mb. Within this region, 10 potential candidate genes have been mapped. The materials and genes described here will provide a resource for the identification and further study of the mutated Lp gene that causes this severe neural tube defect and will provide candidates for other defects known to map to the homologous region on human chromosome 1q.  相似文献   

16.
The Cmv1 locus controls NK cell-mediated resistance to infection with murine CMV. Our recent genetic analysis of backcross mice demonstrated that the NK gene complex (NKC)-linked Cmv1 locus should reside between the Ly49 and Prp gene clusters on distal mouse chromosome 6. We have aligned yeast artificial chromosome (YAC) inserts in a contig spanning the interval between the Ly49 and Prp gene clusters. This YAC contig includes 13 overlapping YAC inserts that span more than 2 megabases (Mb) in C57BL/6 (B6) mice. Since we have identified genomic clones that span the Ly49-Prp gene region, we hypothesize that at least one should contain the Cmv1 locus. To narrow the Cmv1 critical region, we developed novel NKC genetic markers and used these to genotype informative backcross and intra-NKC recombinant congenic mouse DNA samples. These data suggest that Cmv1 resides on a single YAC insert within an interval that corresponds to a physical distance of approximately 390 kb. This high resolution, integrated physical and genetic NKC map will facilitate identification of Cmv1 and other NKC-linked loci that regulate NK cell-mediated immunity.  相似文献   

17.
Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kbMluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7–4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted withNotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in theXbcd249.2-Xmwg068 interval and 0.465 Mb/cM in theXbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate theXbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than theXbcd249.2-Xmwg068 interval.Names are necessary to report factually on available data; however the USDA neither guarantees nor warrants the standard of the product and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable  相似文献   

18.
The polled locus has been mapped by genetic linkage analysis to the proximal region of bovine chromosome 1. As an intermediate step in our efforts to identify the polled locus and the underlying causative mutation for the polled phenotype, we have constructed a BAC-based physical map of the interval containing the polled locus. Clones containing genes and markers in the critical interval were isolated from the TAMBT (constructed from Angus and Longhorn genomic DNA) and CHORI-240 (constructed from horned Hereford genomic DNA) BAC libraries and ordered based on fingerprinting and the presence or absence of 80 STS markers. A single contig spanning 2.5 Mb was assembled. Comparison of the physical order of STSs to the corresponding region of human chromosome 21 revealed the same order of genes within the polled critical interval. This contig of overlapping BAC clones from horned and polled breeds is a useful resource for SNP discovery and characterization of positional candidate genes.  相似文献   

19.
The gene for autosomal recessive retinitis pigmentosa (RP12) with preserved para-arteriolar retinal pigment epithelium was previously mapped close to the F13B gene in region 1q31-->q32.1. A 4-Mb yeast artificial chromosome contig spanning this interval was constructed to facilitate cloning of the RP12 gene. The contig comprises 25 sequence-tagged sites, polymorphic markers, and single-copy probes, including five newly obtained probes. The contig orders the F13B and HF1 genes, as well as five expressed sequence tags, with respect to the integrated genetic map of this region. Homozygosity mapping resulted in refinement of the candidate gene locus for RP12 to a 1. 3-cM region. Currently, approximately 1 Mb of the contig is represented in P1-derived artificial chromosome (PAC) clones. Direct screening of a cDNA library derived from neural retina with PACs resulted in identification of the human elongation factor 1alpha pseudogene (EEF1AL11) and a human ribosomal protein L30 pseudogene (RPL30). A physical and genetic map covering the entire RP12 candidate gene region was constructed.  相似文献   

20.
A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号