首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin was incubated in an adenylate cyclase assay of a particulate fraction of caudateputamen tissue of the rat in order to examine the effect of the peptide on D-1 receptor coupled adenylate cyclase in vitro. Somatostatin was able to enhance cyclic AMP formation in the presence of guanylylimidodiphosphate and guanosine-triphosphate. In contrast to this, somatostatin inhibited both dopamine and forskolin-stimulated cyclic AMP accumulation. Pertussis toxin and cholera toxin also depressed forskolin-induced stimulation. Somatostatin was found to antagonize these inhibitory effects of pertussis toxin and cholera toxin. The results suggest that somatostatin acts through a stimulatory as well as an inhibitory guanine nucleotide regulatory protein subtype to affect dopaminergic adenylate cyclase activity.  相似文献   

2.
The membrane-bound adenylate cyclase (ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1) of isolated rat adrenal cortex cells can be rendered soluble using 0.02 M Lubrol 12A9. The solubilized enzyme can be filtered through Millipore filters with pores 0.22 μm in diameter. Using gel filtration, on Sephadex G-200, adenylate cyclase activity was eluted with a distribution coefficient of 0.139, whereas on Sephadex G-100 the activity was eluted in the excluded volume. Half-maximum activation of the postulated guanyl nucleotide regulator site of adenylate was achieved with 5′-guanylyl-imidodiphosphate at a concentration of 1 · 10?6 M. In contrast, however, using intact isolated rat adrenal cortex cells the guanyl nucleotide regulator site could not be stimulated by 5′-guanylyl-imidodiphosphate.  相似文献   

3.
Several types and subtypes of vocalizations which have a behavioral impact on degu pups were identified. Among these the complex “mothering call” which is exclusively uttered by females and first during extensive nursing periods in the nest is a candidate for filial learning. In 14C-2-fluoro-2-deoxyglucose (FDG) experiments two-weeks-old pups raised by normal mothers showed higher metabolic activity in somatosensory frontoparietal and frontal cortex upon play back of a mothering call than pups raised by muted mothers. It is suggested that pups learn to associate the mothering call with close body contact with their mother early in life. In addition, FDG representation of the call, of its components and of tone and noise stimuli were studied in degu auditory cortex. Five fields and some aspects of tonotopic organization were identified. The mothering call activated all fields, but with more spatial extent of labeling in normally raised pups. A rostral field was activated by play-back of the mothering call, noise, and two-tone sequences, but hardly by single-frequency tones and the narrow-band component of the mothering call. Accepted: 13 August 1997  相似文献   

4.
Puebla, L., A. OcaÑa and E. Arilla. Histamine H1-receptors modulate somatostatin receptors coupled to the inhibition of adenylyl cyclase in the rat frontoparietal cortex. Peptides 18(10) 1569–1576, 1997.—Since exogenous histamine has been previously shown to increase the somatostatin (SS) receptor-effector system in the rat frontoparietal cortex and both histamine H1-receptor agonists and SS modulate higher nervous activity and have anticonvulsive properties, it was of interest to determine the participation of the H1-histaminergic system in this response. The intracerebroventricular (i.c.v.) administration of the specific histamine H1-receptor agonist 2-pyridylethylamine (PEA) (10 μg) to rats 2 h before decapitation increased the number of SS receptors (599 ± 40 vs 401 ± 31 femtomoles/mg protein, p< 0.01) and decreased their apparent affinity for SS (0.41 ± 0.03 vs 0.26 ± 0.02 nM, p < 0.01) in rat frontoparietal cortical membranes. No significant differences were seen for the basal and forskolin (FK)-stimulated adenylyl cyclase (AC) activities in the frontoparietal cortex of PEA-treated rats when compared to the control group. In the PEA group, however, the capacity of SS (10−4 M) to inhibit basal and FK (10−5 M)-stimulated AC activity in frontoparietal cortical membranes was significantly higher than in the control group (34 ± 1% vs 20 ± 2%, p < 0.001). The ability of low concentrations of the stable GTP analogue 5′-guanylylimidodiphosphate [Gpp(NH)p] to inhibit FK-stimulated AC activity in frontoparietal cortical membranes was similar in the PEA-treated and control animals. These results suggest that the increased SS-mediated inhibition of AC activity in the frontoparietal cortex of PEA-treated rats may be due to the increase of the number of SS receptors induced by PEA. Pretreatment with the H1-receptor antagonist mepyramine (30 mg/kg, intraperitoneally (IP) prevented the PEA-induced changes in SS binding and SS-mediated inhibition of AC activity. Mepyramine (30 mg/kg, IP) alone had no observable effect on the somatostatinergic system. The in vitro addition of PEA or mepyramine to frontoparietal cortical membranes obtained from untreated rats did not affect the SS binding parameters. Altogether, these results suggest that the H1-histaminergic system modulates the somatostatinergic system in the rat frontoparietal cortex.  相似文献   

5.
Abstract: Thioperamide (2 mg/kg, i.p.), a histamine H3-receptor antagonist, increased the number of somatostatin (SS) receptors, with no change in the affinity constant, in the rat frontoparietal cortex. This effect was prevented by treatment with ( R )-α-methylhistamine (3.2 mg/kg, i.p.), a histamine H3-receptor agonist. Thioperamide also induced an increase in SS binding in rats pretreated with mepyramine, a histamine H1-receptor antagonist, or cimetidine, a histamine H2-receptor antagonist. Pretreatment with mepyramine plus cimetidine administered simultaneously antagonized the thioperamide effect on SS binding. The increase in the number of SS receptors was accompanied by a greater SS-mediated inhibition of basal and forskolin-stimulated adenylyl cyclase (AC) activity in frontoparietal cortical membranes in the thioperamide group. Furthermore, the functional activity of the guanine nucleotide-binding inhibitory protein (Gi protein) was not altered by thioperamide or ( R )-α-methylhistamine administration in frontoparietal cortical membranes. In rats treated with mepyramine plus thioperamide or cimetidine plus thioperamide, the increase in the number of SS receptors was also accompanied by an increased SS inhibition of AC activity. Thioperamide induced a significant increase in SS-like immunoreactivity content in the frontoparietal cortex. Altogether, these results suggest that frontoparietal cortical histamine may play, at least in part, a role in the regulation of the somatostatinergic system.  相似文献   

6.
Gastrectomy increased pancreatic growth and this effect was associated with an increase in the number of somatostatin-14 (SS) receptors (146% of control) without altering their affinity. SS increased guanylate cyclase activity twofold in pancreatic acinar membranes from gastrectomized rats. The gastrectomy decreased pancreatic SS-like immunoreactivity (SS-LI) content (55% of control levels) and tyrosine phosphatase activity (74% of control levels). Administration of proglumide (20 mg/kg, IP), a gastrin/cholecystokinin (CCK) receptor antagonist, suppressed the inhibitory effect of gastrectomy on basal tyrosine phosphatase activity and SS-LI content, which returned to control levels. Furthermore, proglumide suppressed the increase of the number of SS receptors and of SS-stimulated guanylate cyclase activity induced by gastrectomy. All this suggests that pancreatic acinar cell growth is associated with upregulation of SS receptors, which could represent a mechanism promoted by the cell to negatively regulate the mitogenic activity of pancreatic growth factors such as CCK. In addition, the results also suggest that the negative regulation of tyrosine phosphatase activity may be important in the events involved in the pancreatic hyperplasia observed after gastrectomy.  相似文献   

7.
《Journal of Physiology》2013,107(6):510-516
Prefrontal cortex (PFC) and posterior parietal cortex (PPC) are neural substrates for spatial cognition. We here review studies in which we tested the hypothesis that human frontoparietal cortex may function as a priority map. According to priority map theory, objects or locations in the visual world are represented by neural activity that is proportional to their attentional priority. Using functional magnetic resonance imaging (fMRI), we first identified topographic maps in PFC and PPC as candidate priority maps of space. We then measured fMRI activity in candidate priority maps during the delay periods of a covert attention task, a spatial working memory task, and a motor planning task to test whether the activity depended on the particular spatial cognition. Our hypothesis was that some, but not all, candidate priority maps in PFC and PPC would be agnostic with regard to what was being prioritized, in that their activity would reflect the location in space across tasks rather than a particular kind of spatial cognition (e.g., covert attention). To test whether patterns of delay period activity were interchangeable during the spatial cognitive tasks, we used multivariate classifiers. We found that decoders trained to predict the locations on one task (e.g., working memory) cross-predicted the locations on the other tasks (e.g., covert attention and motor planning) in superior precentral sulcus (sPCS) and in a region of intraparietal sulcus (IPS2), suggesting that these patterns of maintenance activity may be interchangeable across the tasks. Such properties make sPCS in frontal cortex and IPS2 in parietal cortex viable priority map candidates, and suggest that these areas may be the human homologs of the monkey frontal eye field (FEF) and lateral intraparietal area (LIP).  相似文献   

8.
Abstract: The adenylate cyclase activity of rat hippocampal plasma membranes can be stimulated by vaso-active intestinal polypeptide (VIP). Low concentrations (10−9 to 10−7M) of 5'-guanylyl-imido diphosphate (GppNHp) evoke a transient inhibition of the enzyme, which is followed by stimulation with increasing GppNHp concentrations (10−6 to 10−4M). Inclusion of ethyleneglycol - bis - (β - aminoethylether) - N,N' - tetraacetic acid (EGTA) during incubation abolishes the GppNHp inhibition while preserving GppNHp activation. The stimulation induced by GppNHp is amplified by VIP, but the inhibition is unaffected. Adenosine analogs and opiates are inhibitory ligands in the presence of GTP, and their effects can be reversed by the appropiate receptor antagonists, 3-isobutyl-1-methylxanthine and naloxone. Treatment of membranes with trypsin abolishes the GppNHp-induced inhibition without affecting the GppNHp stimulation. The inhibition induced by GppNHp is also abolished by EGTA treatment followed by washing, which coincides wtih a reduction in the adenosine- and opiate-mediated, GTP-dependent inhibition. The GppNHp inhibition can be restored in EGTA-treated but not in trypsin-treated membranes by addition of calcium-calmodulin but not by Ca2+ or Mg2+. Calcium-calmodulindepleted membranes lack calcium stimulation as well as GppNHp-induced inhibition, whereas untreated membranes and calcium-calmodulin-depleted membranes plus exogenous calcium-calmodulin showed calcium stimulation and GppNHp inhibition. These results suggest that calmodulin is involved in both Ca2+ stimulation and guanine nucleotide-mediated inhibition of rat hippocampal adenylate cyclase.  相似文献   

9.
C Roy 《FEBS letters》1984,169(2):133-137
LLC-PK1L cells, a kidney-derived cell line grown in defined medium, possess a vasopressin-sensitive adenylate cyclase. Somatostatin was able to inhibit the vasopressin-induced increase in adenylate cyclase activity, without affecting the basal enzyme activity. This inhibition was competitive. No effect of somatostatin could be detected on [3H]vasopressin binding suggesting an interaction of somatostatin with the vasopressin-sensitive system distal to the hormone-receptor interaction. At variance with N6-L-2-phenylisopropyladenosine (PIA), GTP did not potentiate the inhibition by somatostatin. The inhibition of the vasopressin stimulation by somatostatin and that by PIA were additive. Changing the composition of the cell growth medium increased the number of vasopressin receptors per cell. Cells with a high number of vasopressin receptors were less sensitive to inhibition by somatostatin. Such results suggested that somatostatin and vasopressin receptors and/or the inhibitory (Ni) and stimulatory (Ns) regulatory transducing components are regulated by different mechanisms.  相似文献   

10.
Substance P (SP) and somatostatin (SRIF) are widely spread throughout the CNS where they play a role as neurotransmitters and/or neuromodulators. A colocalization of both neuropeptides has been demonstrated in several rat brain areas and SP receptors have been detected in rat cortical and hippocampal somatostatinergic cells. The present study was thus undertaken to determine whether SP could modulate SRIF signaling pathways in the rat frontoparietal cortex and hippocampus. A single intraperitoneal injection of SP (50, 250 or 500 micro g/kg) induced an increase in the density of SRIF receptors in membranes from the rat frontoparietal cortex at 24 h of its administration, with no change in the hippocampus. The functionality of the SRIF receptors was next investigated. Western blot analysis of Gi proteins demonstrated a significant decrease in Gialpha1 levels in frontoparietal cortical membranes from rats treated acutely (24 h) with 250 micro g/kg of SP, which correlated with a decrease in functional Gi activity, as assessed by use of the non-hydrolyzable GTP analog 5'-guanylylimidodiphosphate. SRIF-mediated inhibition of basal or forskolin-stimulated adenylyl cyclase activity was also significantly lower in the frontoparietal cortex of the SP-treated group, with no alterations in the catalytic subunit of the enzyme. SRIF-like immunoreactivity content was increased in the frontoparietal cortex after acute (24 h) SP administration (250 or 500 micro g/kg) as well as in the hippocampus in response to 7 days of SP (250 micro g/kg) administration. All these SP-mediated effects were prevented by pretreatment with the NK1 receptor antagonist RP-67580. Although the physiologic significance of these results are unknown, the increase in SRIF receptor density together with the desensitization of the SRIF inhibitory signaling pathway might be a mechanism to potentiate the stimulatory pathway of SRIF, inducing a preferential coupling of the receptors to PLC.  相似文献   

11.
Primary cultures of mouse embryonic neuronal or glial cells from the cerebral cortex, striatum, and mesencephalon were used to identify and determine the cellular localization of somatostatin receptors coupled to an adenylate cyclase. Somatostatin inhibited basal adenylate cyclase activity on neuronal but not on glial crude membranes in the three structures examined. The somatostatin-inhibitory effect on neuronal crude membranes was still observed in the presence of (-)-isoproterenol, 3,4-dihydroxyphenylethylamine (dopamine, DA), or 5-hydroxytryptamine (5-HT, serotonin) used at a concentration (10(-5) M) inducing maximal adenylate cyclase activation. In addition, in most cases biogenic amines modified the pattern of the somatostatin-inhibitory effect, triggering either an increase in the peptide apparent affinity for its receptors or an increase in the maximal reduction of adenylate cyclase activity or both. However, 5-HT did not modify the somatostatin-inhibitory response on striatal and cortical neuronal crude membranes. The changes in somatostatin-inhibitory responses were interpreted as a colocalization of the amine and the peptide receptors on subtypes of neuronal cell populations. Finally, somatostatin was shown to inhibit adenylate cyclase activity following its activation by (-)-isoproterenol on glial crude membranes of the striatum and the mesencephalon but not on those of the cerebral cortex.  相似文献   

12.
Nitric oxide (NO) and somatostatin (SS) are two important mediators of the exocrine and endocrine pancreas, exerting opposite effects on this organ. There is strong evidence suggesting an interaction between pancreatic NO and SS. The aim of this study was to determine whether L-arginine (L-Arg), the substrate for NO synthase (NOS), and Nomega-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, regulate pancreatic somatostatin-like immunoreactivity (SSLI) content and the SS mechanism of action in pancreatic acinar cell membranes. L-Arg (150 mg/kg, intraperitoneally (i.p.)), L-NAME (50 mg/kg, i.p.) or L-NAME plus L-Arg were injected twice daily at 8 h intervals for 8 days. L-Arg decreased pancreatic SSLI content as well as the number of SS receptors in pancreatic acinar cell membranes whereas L-NAME increased both parameters. The stable SS analogue SMS 201-995 induced a significantly lower inhibition of forskolin-stimulated adenylyl cyclase activity in pancreatic acinar cell membranes from L-Arg-treated rats whereas an increased inhibition was observed in pancreatic acinar membranes from L-NAME-treated rats. These results indicate that the NO system may contribute to the regulation of the pancreatic somatostatinergic system.  相似文献   

13.
The receptors mediating the inhibition of D1 dopamine receptor-stimulated adenylate cyclase by opioids were examined in primary cultures of rat neostriatal neurons. Adenylate cyclase activity was dose-dependently increased by the selective D1 dopamine receptor agonist SKF 38393 (EC50 = 0.05 microM). This stimulation was fully antagonized by the selective D1 dopamine receptor antagonist SCH 23390 (1 microM). SKF 38393 (1 microM)-stimulated adenylate cyclase activity was strongly reduced (by almost 60%) by the highly selective mu-agonist [D-Ala2, MePhe4, Gly-ol5]-enkephalin (DAGO; EC50 = 0.006 microM) and high concentrations of the selective delta-agonist [D-Ser2(O-tert-butyl), Leu5]-enkephalyl-Thr6 (DSTBU-LET; EC50 = 0.13 microM) but not by the selective delta-agonist [D-penicillamine2, D-penicillamine5]enkephalin (DPDPE). D1 dopamine receptor-stimulated adenylate cyclase activity was also slightly reduced (by approximately 20%) by high concentrations of the kappa-agonist U50,488 (EC50 = 0.63 microM). The inhibitory effects of submaximally effective concentrations of DAGO, DSTBULET, and U50,488 were equally well antagonized by the mu-opioid receptor-selective antagonist naloxone (EC50 of approximately 0.1 microM). Neither the irreversible delta-ligand fentanyl isothiocyanate (1 microM) nor the reversible delta-antagonist ICI 174864 (1 microM) reversed the inhibitory effects of DSTBULET. The inhibitory effects of DAGO and U50,488 were equally well reversed by high concentrations (greater than 0.1 microM) of the kappa-opioid receptor-selective antagonist norbinaltorphimine. The effect of DAGO (1 microM) was already detectable after 1 day in culture, whereas DPDPE (1 microM) had no effect even after 28 days in culture. These data indicate that an homogeneous population of mu-opioid receptors coupled as inhibitors to D1 dopamine receptor-stimulated adenylate cyclase is expressed in rat neostriatal neurons in primary culture.  相似文献   

14.
目的研究东菱克栓酶治疗对脑梗死患者腺苷酸环化酶(AC)的影响。方法选取于2012年1月至2014年1月在本溪市中心医院治疗的脑梗死患者56例作为研究对象,采用抽签法将患者分为两组,对照组采用常规治疗,观察组在常规治疗的基础上采取东菱克栓酶治疗,利用RT-PCR技术检测两组患者治疗前后AC表达情况(AC/GPR-DH),并观察临床疗效。结果治疗前对比分析两组患者AC/GPRDH比值,差异无统计学意义(P〉0.05);经针对性治疗后,观察组患者的AC/GPR-DH比值上升幅度为(0.861±0.030),较对照组(0.443±0.024)显著上升,经比较差异有统计学意义(P〈0.05);观察组治疗总有效率(89.29%)较对照组(60.71%)高,差异有统计学意义(P〈0.05);治疗后,观察组血脂指标浓度(TC:4.74±1.20;TG:1.06±1.04;LDL-C:3.19±1.22)下降量明显多于对照组(TC:5.25±1.15;TG:1.51±1.12;LDL-C:3.87±1.25),差异均有统计学意义(均P〈0.05)。结论研究表明观察组治疗可明显缓解病患的并发症,具有积极意义。采用中医体质辨识理论结合解郁合欢汤治疗失眠患者具有较好的临床疗效,值得推广使用。  相似文献   

15.
The presence of vasoactive intestinal polypeptide (VIP) receptors coupled to an adenylate cyclase was demonstrated on membranes of neurons or glial cells grown in primary cultures originating from the cerebral cortex, striatum, and mesencephalon of mouse embryos. A biphasic pattern of activation was observed in all these cell types, involving distinct high- and low-apparent-affinity mechanisms. The absence of additive effects of VIP and 3,4-dihydroxyphenylethylamine (DA, dopamine), isoproterenol (ISO), and 5-hydroxytryptamine (5-HT, serotonin) suggests that the peptide receptors are colocated with each of the corresponding amine receptors on neuronal membranes of the three structures studied. The nonadditivity between the VIP- and ISO-induced responses on cortical and striatal glial membranes reveals as well a colocation of VIP and beta-adrenergic-sensitive adenylate cyclases on the same cells. A subpopulation of mesencephalic glia could possess only one of the two types of receptors, as a partial additivity of the VIP and ISO responses was seen. In addition, VIP modified the characteristics of the somatostatin inhibitory effect on adenylate cyclase activity of neuronal membranes from the cerebral cortex and striatum but not from those of the mesencephalon. On striatal and mesencephalic glial membranes the somatostatin inhibitory effect was observed only in the presence of VIP. However, as previously seen with ISO, the presence of VIP did not allow the appearance of a somatostatin inhibitory response on cortical glial membranes. This suggests that cortical glia are devoid of somatostatin receptors.  相似文献   

16.
Many areas of the cerebral cortex process sensory information or coordinate motor output necessary for control of movement. Disturbances in cortical cholinergic system can affect locomotor coordination. Spinal cord injury causes severe motor impairment and disturbances in cholinergic signalling can aggravate the situation. Considering the impact of cortical cholinergic firing in locomotion, we focussed the study in understanding the cholinergic alterations in cerebral cortex during spinal cord injury. The gene expression of key enzymes in cholinergic pathway - acetylcholine esterase and choline acetyl transferase showed significant upregulation in the cerebral cortex of spinal cord injured group compared to control with the fold increase in expression of acetylcholine esterase prominently higher than cholineacetyl transferase. The decreased muscarinic receptor density and reduced immunostaining of muscarinic receptor subtypes along with down regulated gene expression of muscarinic M1 and M3 receptor subtypes accounts for dysfunction of metabotropic acetylcholine receptors in spinal cord injury group. Ionotropic acetylcholine receptor alterations were evident from the decreased gene expression of alpha 7 nicotinic receptors and reduced immunostaining of alpha 7 nicotinic receptors in confocal imaging. Our data pin points the disturbances in cortical cholinergic function due to spinal cord injury; which can augment the locomotor deficits. This can be taken into account while devising a proper therapeutic approach to manage spinal cord injury.  相似文献   

17.
Abstract: Adenylate cyclase in microvessels isolated from rat cerebral cortex was stimulated by guanine nucleotides, catecholamines, prostaglandin E1, prostaglandin E2, and 2-chloroadenosine. Catecholamine stimulation was mediated by interaction with β-adrenergic receptors. The order of relative potency was: isoproterenol > epinephrine > norepinephrine. Activation of microvessel adenylate cyclase by prostaglandins E1 and E2 as well as by 2-chloroadenosine was dose related. Twenty-two peptides were tested for possible effects on the microvessel adenylate cyclase. Only vasoactive intestinal polypeptide (VIP) was stimulatory. No inhibitory action was observed. Activation by VIP required guanosine triphosphate and was dose dependent from 10 n M to μ M (ED50= 0.1 μ M ). At 30°C, stimulation of adenylate cyclase by the peptide increased linearly with time for up to 15 min. The effect of VIP was not inhibited by phentolamine or propranolol, suggesting that its action was not elicited by interaction with α- or β-adrenergic receptors. Activation achieved by VIP and isoproterenol, prostaglandin E1, or 2-chloroadenosine was the sum of the individual stimulations, suggesting that receptors for VIP were distinct from those for isoproterenol, prostaglandin E1, and 2-chloroadenosine.  相似文献   

18.
Serotonin has no obvious effect on basal cyclic AMP levels but reduces the forskolin-, isoproterenol-, and vasoactive intestinal peptide-induced stimulation of cyclic AMP levels in a dose-dependent manner. Serotonergic, cholinergic, muscarinic, alpha-adrenergic, and dopaminergic antagonists have no effect on the serotonin response. Topical application of a serotonin/pargyline solution to the living eye causes desensitisation of the serotonin response in the iris-ciliary body, an observation confirming the presence of specific serotonergic receptors linked to adenylate cyclase. The 5-HT1A [5-hydroxytryptamine (serotonin) type 1A] receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin and buspirone mimic the serotonin response in reducing the forskolin-stimulated cyclic AMP levels, as do the indole derivatives 5-methoxytryptamine, 5-hydroxtryptophan, and tryptamine. However, the ineffectiveness of the 5-HT1A agonist ipsapirone and the inability of spiroxatrine to block the serotonin response show that classical 5-HT1A receptors are not involved. The serotonin response is blocked by pertussis toxin and is insensitive to the phosphodiesterase inhibitor theophylline, which indicates the involvement of an inhibitory guanine regulatory protein in the coupling of the serotonin receptor to the adenylate cyclase catalytic unit.  相似文献   

19.
The response of adenylate cyclase to GTP and to dopamine (DA) was investigated in synaptic plasma membranes isolated from rat striatum injected with pertussis toxin, which inactivates the inhibitory guanine nucleotide-binding regulatory protein (Ni) of adenylate cyclase. Pertussis toxin treatment reverted the inhibitory effects on the enzyme activity elicited by micromolar concentrations of GTP and reduced by 50% the DA inhibition of cyclase activity via D2 receptors. The toxin treatment enhanced the net stimulation of enzyme activity by DA in the presence of micromolar concentrations of GTP. However, the stimulatory effect of the selective D1 receptor agonist SKF 38393 was not significantly affected. The data indicate that Ni mediates D2 inhibition of striatal adenylate cyclase and participates in the modulation of D1 stimulation of the enzyme activity by DA.  相似文献   

20.
In the present study, we have applied the brain microdialysis technique to investigate the effect of the stimulation of adenylate cyclase on the extracellular levels of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the striatum of freely moving rats. Infusion of 8-bromo-adenosine 3',5'-cyclic monophosphate (8-Br-cAMP), 3-isobutyl-1-methylxanthine, or forskolin produced a significant increase in the release of DA. The effect of 8-Br-cAMP was tetrodotoxin, Ca2+, and dose dependent and was saturable. 8-Br-cAMP also caused an increase in the output of DOPAC and HVA. No effects were seen on the output of 5-HIAA, except at the highest 8-Br-cAMP concentration studied. Infusion of 8-Br-cAMP (25 microM, 1.0 mM, and 3.3 mM) together with infusion of (-)-sulpiride (1 microM) or systemic administration of (+/-)-sulpiride (55 mumol/kg i.p.) produced an additive effect on the release of DA. Infusion or peripheral administration of (-)-N-0437 (1 microM or 1 mumol/kg) both decreased the 8-Br-cAMP-induced increase in the release of DA. These results demonstrate that cyclic AMP may stimulate the release of DA, but it is unlikely that this second messenger is linked to presynaptic D2 receptors controlling the release of DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号