首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Her2 is one of tumor-associated antigens (TAA), regarded as an ideal target of immunotherapy. DNA encoding full-length or truncated rat Her2/neu have shown protective and therapeutics potentials against Her2/neu-expressing mammary tumors. However, the efficacy of active vaccination is limited since Her2 is a self-tolerated antigen. Hence, new strategies are required to enhance both the quality and quantity of the immune response against Her2-expressing tumors. Many studies have used Her2/neu gene with cytokine or other molecules involved in regulation of immune response to enhance the potency of Her2/neu DNA vaccines. Some studies fused adjuvant gene to C-terminal domain of Her2/neu gene, while others fused the adjuvant gene N-terminally to Her2/neu gene, but no comparison on how direction of fusion could affect efficiency of DNA vaccine has ever been made. Based on previous reports demonstrating potent adjuvant activity of gp96 C-terminal domain, we chose it as adjuvant. The aim of this study was to investigate if direction of fusion could affect adjuvant activity of gp96 C-terminal domain or potency of Her2/neu DNA vaccination. To do so, we fused C-terminal domain of gp96 to downstream or C-terminal end of transmembrane and extracellular domain (TM+ECD) of rat Her2/neu and resultant immune response to DNA vaccination was evaluated. The results were compared with that of N-terminally fusion of gp96 C-terminal domain to TM+ECD of rat Her2/neu. Our results revealed that adjuvant activity of gp96 C-terminal domain is enhanced when fused N-terminally to TM+ECD of rat Her2/neu. It suggests that adjuvant activity of gp96 C-terminal domain towards Her2/neu is fusion direction-dependent.  相似文献   

2.
DNA vaccines consisted of tumor-associated antigen (TAA) are well suited for immunotherapy against tumor. The construct can contain TAA fused to an appropriate molecule (biologic adjuvant) to improve the efficacy of anti-tumor immune response. Heat shock protein 70 (HSP70) has been shown to be an excellent candidate, capable of cross-priming TAA by antigen presenting cells leading to a robust T-cell response. However, the relationship between strong T-cell responses and tumor rejection is not always mutually exclusive, for which TAA loss or activation of suppressive mechanisms may occur. HSP70 fused to downstream of Her2/neu as DNA vaccine has been shown to be efficient against Her2-expressing tumors. In this study, we examined if N-terminally fusion of Her2/neu to HSP70 could also improve efficiency of Her2/neu DNA vaccine. Therefore, mice with an established Her2/neu expressing tumor were immunized with DNA vaccine consisting of extracellular and trans-membrane domain (EC+TM) of rat Her2/neu alone or N-terminally fused to HSP70 and immune response was evaluated. Administration of rat Her2/neu led to partial control of tumor progression. Surprisingly, fusion of HSP70 to N-terminal of rat Her2/neu led to tumor progression. Our result proposes that fusion direction of biologic adjuvant is an important consideration when Her2/neu is used.  相似文献   

3.
Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues 952ENI954 to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.  相似文献   

4.
Heat-shock proteins have biochemical and immunological roles in chaperoning/signaling and activation of innate and adaptive immune responses, respectively. Their effect on the immune response is due to a phenomenon known as cross-priming of antigen, in which exogenous antigens are presented via MHC class I by antigen presenting cells. GP96 exerts adjuvant activity with some viral and bacterial antigens when applied in the form of a DNA vaccine. In this study, animals with Her2-expressing tumors were vaccinated by co-administration of GP96+ Her2/neu DNA vaccines. Analyses of the immune response, 2 weeks after the last immunization revealed decreased CD4+ CD25+ Foxp3+ naturally occurring regulatory T cells (Tregs) at the tumor site and increased IFN-γ/IL-4 level. Nevertheless, the graph of tumor size demonstrated a bi-phasic pattern in which partial control of tumor progression initially occurred, but finally its effectiveness was inversely affected by tumor size.  相似文献   

5.
In pre-clinical and clinical settings, active immunization with a Her-2/neu vaccine (HerVaxx), comprising B-cell peptide from Trastuzumab binding site, has been shown to reduce primary tumor growth via induction of polyclonal anti-tumor immune responses and immunological memory. Here, we tested the combination of HerVaxx and the recently identified B-cell epitope/mimotope of Pertuzumab, i.e. a multi-peptide B-cell vaccine, for preventing Her-2/neu lung metastases formation in a mouse model. Active immunization with the multi-peptide vaccine was associated with decreased lung weights, and histological evaluation of the lungs showed that the significant reduction of lung metastases was associated with increased CD4+ and CD8+ T cell infiltration. Notably, along with the overall reduction of lungs weights and Her-2 positive metastases, a formation of Her-2/neu-negative tumors but with increased PD-L1 expression was observed. Our results might pave the way to a multi-peptide B-cell Her-2/neu vaccine serving as a secondary intervention in adjuvant settings to prevent tumor recurrence and spread. Moreover, combination therapy targeting PD-L1 may result in total remission of metastases. Such a therapy may be used clinically to alternately target Her-2/neu and PD-L1 in metastatic breast cancer.  相似文献   

6.
It is well known that DNA vaccines induce protective humoral and cell-mediated immune responses in several animal models. Antrodia camphorata (AC) is a unique basidiomycete fungus of the Polyporaceae family that only grows on the aromatic tree Cinnamomum kanehirai Hayata (Lauraceae) endemic to Taiwan. Importantly, AC has been shown to be highly beneficial in the treatment and prevention of cancer. The goal of this study was to investigate whether AC is able to augment the antitumor immune properties of a HER-2/neu DNA vaccine in a mouse model in which p185neu is overexpressed in MBT-2 tumor cells. Compared with the mice that received the HER-2/neu DNA vaccine alone, co-treatment with AC suppressed tumor growth and extended the survival rate. This increase in the antitumor efficacy was attributed to the enhancement of the Th1-like cellular immune response by the HER-2/neu DNA vaccine–AC combination. Evidence for this came from the marked increase in the IFN-γ mRNA expression in CD4+ T cells in the draining inguinal lymph nodes, an increase in the number of functional HER-2/neu-specific CTLs, and the increased tumor infiltration of both CD4+ and CD8+ T cells, depletion of which abolishes the antitumor effect of the HER-2/neu DNA vaccine–AC therapy. Our results further indicate that the treatment of mice with AC enhanced DC activation and production of Th1-activating cytokines (e.g. IL-12, and IFN-α) in the draining lymph nodes, which were sufficient to directly stimulate T cell proliferation and higher IFN-γ production in response to ErbB2. Overall, these results clearly demonstrate that AC represents a promising immunomodulatory adjuvant that could enhance the therapeutic potency of HER-2/neu DNA vaccines in cancer therapy.  相似文献   

7.
Background and purpose Immunization with heat shock proteins, gp96, elicits specific protective immunity against parent tumors. However, it is marginally effective as a therapeutic tool against established tumors. In the present study, we evaluated the efficacy and mechanism of immunotherapy with bone marrow-derived dendritic cells (DCs) pulsed with tumor-derived gp96 against murine lung cancer. Methods Mice were transplanted subcutaneously with ovalbumin (OVA)-transfected Lewis Lung Cancer (LLC-OVA) cells and immunized with gp96 derived from LLC-OVA, DCs, or DCs pulsed with gp96 derived from LLC-OVA. Results The antitumor effect was significantly enhanced in the mice immunized with DCs pulsed with gp96 derived from LLC-OVA, compared to mice immunized with gp96 or DCs (P < 0.05). The antitumor effect was significantly dependent on natural killer (NK) cells and CD8+ cells and partially dependent on CD4+ cells. Analysis by laser confocal microscopy demonstrated that gp96 was shown on the cell surface at 15 min, and after 30 min internalized in the endosomes and not in the endoplasmic reticulum or lysosomes. OVA-specific+ CD8+ cells were more readily recruited into the draining lymph nodes and higher CD8+ cytotoxic T cell activity against LLC-OVA was observed in splenocytes from mice immunized with DCs pulsed with gp96 derived from LLC-OVA. Re-challenge of the surviving mice with LLC-OVA tumors after the initial tumor inoculation showed dramatic retardation in tumor growth. Conclusion In conclusion, immunotherapy of DCs pulsed with tumor-derived gp96 against murine lung cancer is effective through immune response of CD8+ cytotoxic T lymphocytes and NK cells.  相似文献   

8.
Systemic IL-2 is currently employed in the therapy of several tumor types, but at the price of often severe toxicities. Local vector mediated delivery of IL-2 at the tumor site may enhance local effector cell activity while reducing toxicity. To examine this, a model using CEA-transgenic mice bearing established CEA expressing tumors was employed. The vaccine regimen was a s.c. prime vaccination with recombinant vaccinia (rV) expressing transgenes for CEA and a triad of costimulatory molecules (TRICOM) followed by i.t. boosting with rF-CEA/TRICOM. The addition of intratumoral (i.t.) delivery of IL-2 via a recombinant fowlpox (rF) IL-2 vector greatly enhanced anti-tumor activity of a recombinant vaccine, resulting in complete tumor regression in 70–80% of mice. The anti-tumor activity was shown to be dependent on CD8+ cells and NK1.1+. Cellular immune assays revealed that the addition of rF-IL-2 to the vaccination therapy enhanced CEA-specific tetramer+ cell numbers, cytokine release and CTL lysis of CEA+ targets. Moreover, tumor-bearing mice vaccinated with the CEA/TRICOM displayed an antigen cascade, i.e., CD8+ T cell responses to two other antigens expressed on the tumor and not the vaccine: wild-type p53 and endogenous retroviral antigen gp70. Mice receiving rF-IL-2 during vaccination demonstrated higher avidity CEA-specific, as well as higher avidity gp70-specific, CD8+ T cells when compared with mice vaccinated without rF-IL-2. These studies demonstrate for the first time that the level and avidity of antigen specific CTL, as well as the therapeutic outcome can be improved with the use of i.t. rF-IL-2 with vaccine regimens.  相似文献   

9.
The metazoan mitochondrial DNA helicase is an integral part of the minimal mitochondrial replisome. It exhibits strong sequence homology with the bacteriophage T7 gene 4 protein primase-helicase (T7 gp4). Both proteins contain distinct N- and C-terminal domains separated by a flexible linker. The C-terminal domain catalyzes its characteristic DNA-dependent NTPase activity, and can unwind duplex DNA substrates independently of the N-terminal domain. Whereas the N-terminal domain in T7 gp4 contains a DNA primase activity, this function is lost in metazoan mtDNA helicase. Thus, although the functions of the C-terminal domain and the linker are partially understood, the role of the N-terminal region in the metazoan replicative mtDNA helicase remains elusive. Here, we show that the N-terminal domain of Drosophila melanogaster mtDNA helicase coordinates iron in a 2Fe-2S cluster that enhances protein stability in vitro. The N-terminal domain binds the cluster through conserved cysteine residues (Cys68, Cys71, Cys102, and Cys105) that are responsible for coordinating zinc in T7 gp4. Moreover, we show that the N-terminal domain binds both single- and double-stranded DNA oligomers, with an apparent Kd of ∼120 nm. These findings suggest a possible role for the N-terminal domain of metazoan mtDNA helicase in recruiting and binding DNA at the replication fork.  相似文献   

10.
Immunization with high-dose heat shock protein gp96, an endoplasmic reticulum counterpart of the Hsp90 family, significantly enhances regulatory T cell (Treg) frequency and suppressive function. Here, we examined the potential role and mechanism of gp96 in regulating immune-mediated hepatic injury in mice. High-dose gp96 immunization elicited rapid and long-lasting protection of mice against concanavalin A (Con A)-and anti-CD137-induced liver injury, as evidenced by decreased alanine aminotransaminase (ALT) levels, hepatic necrosis, serum pro-inflammatory cytokines (IFN-γ, TNF-α, and IL-6), and number of IFN-γ + CD4+ and IFN-γ + CD8+ T cells in the spleen and liver. In contrast, CD4+CD25+Foxp3+ Treg frequency and suppressive function were both increased, and the protective effect of gp96 could be generated by adoptive transfer of Treg cells from gp96-immunized mice. In vitro co-culture experiments demonstrated that gp96 stimulation enhanced Treg proliferation and suppressive function, and up-regulation of Foxp3, IL-10, and TGF-β1 induced by gp96 was dependent on TLR2- and TLR4-mediated NF-κB activation. Our work shows that activation of Tregs by high-dose gp96 immunization protects against Con A- and anti-CD137-induced T cell-hepatitis and provides therapeutic potential for the development of a gp96-based anti-immune hyperactivation vaccine against immune-mediated liver destruction.  相似文献   

11.
Heat shock proteins such as gp96 are immunogenic and are widely used as vaccines in immunotherapy of cancers. The present study focuses on the use of peptide mimotopes as immunotherapeutic vaccines for prostate cancer. To this end, we developed a 15-mer gp96 peptide mimotope specifically reactive to MAT-LyLu gp96–peptide complex using combinatorial single-chain antibody and peptide phage display library. The immunogenicity of the synthesized gp96 mimotope was analyzed initially in normal BALB/c mice in combination with various adjuvants such as complete Freund’s adjuvant (CFA), aluminum salts (ALUM), granulocyte-macrophage colony-stimulating factor (GM-CSF), and liposome, of which CFA served as a positive control. The antibody response was determined and found that the gp96 mimotope with ALUM showed a significant increase in antibody titer, followed by GM-CSF and liposomes. Further, the T cell (CD4+ and CD8+) populations from splenocytes, as well as IgG isotypes, interleukin-4, and interleukin-5 of gp96 mimotope with ALUM-immunized animals, were analyzed. The results suggest that the gp96 mimotope may elicit a potent and effective antitumor antibody response. Further, the study identifies ALUM and GM-CSF as adjuvant options to drive an appropriate protective immune response as these adjuvants have prior use in humans.  相似文献   

12.
BACKGROUND: Many clinical trials show that DNA vaccine potency needs to be greatly enhanced. We have reported that the N-terminal fragment of glycoprotein 96 (gp96) is able to produce an adjuvant effect for production of cytotoxic T-lymphocytes (CTLs) with hepatitis B virus (HBV)-specific peptides. Here, we report a new strategy for HBV DNA vaccine design using a partial gp96 sequence. MATERIALS AND METHODS: We linked the N-terminal 1-355aa (N355) of gp96 to HBV genes encoding for structural proteins, the major S and middle S2S envelope proteins and the truncated core HBcAg (1-149aa). ELISPOT, tetramer staining and intracellular IFN-gamma assay were performed to analyze the induced cellular immune responses of our DNA constructs in BALB/c mice and HLA-A2 transgenic mice. The relative humoral immune responses were analyzed in different IgG isotypes. RESULTS: The fusion genes induced 2- to 6-fold higher HBV-specific CD8(+) T cells as compared to the antigens alone. There was an approximate 10-fold decrease in the humoral immune responses with fusion genes based on HBV envelope proteins. Interestingly, the decreased humoral immune responses were not observed when antigens and plasmid encoding N355 were co-delivered. However, an approximate 20-fold higher antibody level was induced when linking N355 to a truncated HBcAg. Immunization by intramuscular injection resulted in predominantly IgG2a antibodies, which indicated that these vaccines preferentially prime Th1 responses. CONCLUSIONS: We constructed highly immunogenic fusions by linking the N-terminal fragment of gp96 to HBV antigens. Our results imply that the N-terminal fragment of gp96 may be used as a molecular adjuvant to enhance the potency of DNA vaccines.  相似文献   

13.
Previously, we reported that a 7-mer HLA-A11-restricted peptide (YVNTNMG) of hepatitis B virus (HBV) core Ag (HBcAg(88-94)) was associated with heat shock protein (HSP) gp96 in liver tissues of patients with HBV-induced hepatocellular carcinoma (HCC). This peptide is highly homologous to a human HLA-A11-restricted 9-mer peptide (YVNVNMGLK) and to a mouse H-2-K(d)-restricted 9-mer peptide (SYVNTNMGL). To further characterize its immunogenicity, BALB/c mice were vaccinated with the HBV 7-mer peptide. It was found that a specific CTL response was induced by the 7-mer peptide, although the response was approximately 50% of that induced by the mouse H-2-K(d)-restricted 9-mer peptide, as detected by ELISPOT, tetramer, and (51)Cr release assays. To evaluate the adjuvant effect of HSP gp96, mice were coimmunized with gp96 and the 9-mer peptide, and a significant adjuvant effect was observed with gp96. To further determine whether the immune effect of gp96 was dependent on peptide binding, the N- and C-terminal fragments of gp96, which are believed to contain the putative peptide-binding domain, were cloned and expressed in Escherichia coli. CTL assays indicated that only the N-terminal fragment, but not the C-terminal fragment, was able to produce the adjuvant effect. These results clearly demonstrated the potential of using gp96 or its N-terminal fragment as a possible adjuvant to augment CTL response against HBV infection and HCC.  相似文献   

14.
Virus capsid assembly requires recruiting and organizing multiple copies of protein subunits to form a closed shell for genome packaging that leads to infectivity. Many viruses encode scaffolding proteins to shift the equilibrium toward particle formation by promoting intersubunit interactions and stabilizing assembly intermediates. Bacteriophage HK97 lacks an explicit scaffolding protein, but the capsid protein (gp5) contains a scaffold-like N-terminal segment termed the delta domain. When gp5 is expressed in Escherichia coli, the delta domain guides 420 copies of the subunit into a procapsid with T = 7 laevo icosahedral symmetry named Prohead-I. Prohead-I can be disassembled and reassembled under mild conditions and it cannot mature further. When the virally encoded protease (gp4) is coexpressed with gp5, it is incorporated into the capsid and digests the delta domain followed by autoproteolysis to produce the metastable Prohead-II. Prohead-I+P was isolated by coexpressing gp5 and an inactive mutant of gp4. Prohead-I and Prohead-I+P were compared by biochemical methods, revealing that the inactive protease stabilized the capsid against disassembly by chemical or physical stress. The crystal structure of Prohead-I+P was determined at 5.2 Å resolution, and distortions were observed in the subunit tertiary structures similar to those observed previously in Prohead-II. Prohead-I+P differed from Prohead-II due to the presence of the delta domain and the resulting repositioning of the N-arms, explaining why Prohead-I can be reversibly dissociated and cannot mature. Low-resolution X-ray data enhanced the density of the relatively dynamic delta domains, revealing their quaternary arrangement and suggesting how they drive proper assembly.  相似文献   

15.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

16.
17.
Subclinical doses of Paclitaxel (PTX) given 1 day prior to a HER-2/neu (neu)-targeted, granulocyte-macrophage colony stimulating factor (GM-CSF)-secreting whole-cell vaccine enhances neu-specific T cell responses and slows neu+ tumor growth in tolerized HER-2/neu (neu-N) mice. We demonstrate that co-administration of PTX and Cyclophosphamide (CY) synergizes to slow tumor growth, and that in vitro, DC precursors exposed to PTX before LPS maturation results in greater co-stimulatory molecule expression, IL-12 production, and the ability to induce CD8+ T cells with enhanced lytic activity against neu+ tumors. PTX treatment also enhances maturation marker expression on CD11c+ DCs isolated from vaccine-draining lymph nodes. Ex vivo, these DCs activate CD8+ T cells with greater lytic capability than DC’s from vaccine alone-treated neu-N mice. Finally, PTX treatment results in enhanced antigen-specific, IFN-γ-secreting CD8+ T cells in vivo. Thus, administration of PTX with a tumor vaccine improves T cell priming through enhanced maturation of DC.  相似文献   

18.
Abstract

The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C- terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.  相似文献   

19.
Developing a cancer vaccine with a potent adjuvant, which is safe for human use, remains to be an unmet need. In this study, we developed a simple, safe, yet efficient, peptide-based therapeutic cancer vaccine, DOTAP/E7 complex, which comprises only two molecules: a DOTAP cationic lipid and a peptide antigen derived from E7 oncoprotein of human papillomavirus (HPV) type 16. The anti-cancer activity of DOTAP/E7 against existing HPV positive TC-1 tumor was compared to that of our previous LPD/E7 formulation, which contains bacterial DNA CpG motifs. Tumor-bearing mice showed significant tumor inhibition following a single vaccination of either formulation at the optimal lipid dose, suggesting that DOTAP liposome alone can provide a potent adjuvant activity without plasmid DNA. E7 peptide formulated with DOTAP induced migration of activated dendritic cells (DC) to the draining lymph node (DLN) and efficiently generated functional antigen-specific CD8+ T lymphocyte responses. Accumulation of CD8+ tumor infiltrating T cells and apoptosis at tumor sites were observed after treatment with DOTAP/E7 complexes, which was also associated with a decreased amount of CD25+Foxp3+ regulatory T cells in treated animals. Reactive oxygen species (ROS) induced by DOTAP cationic lipid in DLN revealed a plausible mechanism of the initial interaction between DC and DOTAP. An adequate amount of ROS generation was apparently required for the initiation of the vaccine mechanism; however, an overdose of DOTAP induced massive ROS production and apoptosis of DC in DLN, which led to diminished anti-cancer immunity. Overall, these results indicate that cationic lipid DOTAP alone serves as an efficient vaccine adjuvant for the induction of a therapeutic, antigen-specific anti-cancer activity.  相似文献   

20.
Ubiquitin–proteasome system plays an essential role in the immune response due to its involvement in the antigen generation and presentation to CD8+ T cells. Hereby, ubiquitin fused to antigens has been explored as an immunotherapeutic strategy that requires the activation of cytotoxic T lymphocytes. Here we propose to apply this ubiquitin fusion approach to a recombinant vaccine against human papillomavirus 16-infected cells. E6E7 multi-epitope antigen was fused genetically at its N- or C-terminal end to ubiquitin and expressed in Escherichia coli as inclusion bodies. The antigens were solubilized using urea and purified by nickel affinity chromatography in denatured condition. Fusion of ubiquitin to E6E7 resulted in marked polyubiquitination in vitro mainly when fused to the E6E7 N-terminal. When tested in a therapeutic scenario, the fusion of ubiquitin to E6E7 reinforced the anti-tumor protection and increased the E6/E7-specific cellular immune responses. Present results encourage the investigation of the adjuvant potential of the ubiquitin fusion to recombinant vaccines requiring CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号