首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.  相似文献   

2.
It has been found that the species composition of parasites infesting the Chinese sleeper Perccottus glenii in water bodies from the nonnative part of its range is more depleted. Here, the phylogenetic distances between parasites exceed those in the native part of the range. It has been revealed that parasitological differences between P. glenii populations from the nonnative and native parts of the range, as well as between populations inside the nonnative part, have similar composition and abundance of the host-specific and euryxenous components in the parasitic fauna. It has been shown that these differences are determined by the genesis of sites from which P. glenii is introduced, as well as the local conditions of the recipient water bodies.  相似文献   

3.
Due to its beneficial effects on river ecosystems, black alder (Alnus glutinosa) is one of the tree species selected for planting on riverbanks in the cross-border area encompassing Wallonia in Belgium, Lorraine in France, and Luxembourg. The preservation of this species, however, is threatened by an invasive pathogen that particularly targets and kills young alder individuals. The objectives of this study were to characterize the genetic diversity and the genetic structure of A. glutinosa at this local level with the aim of assisting the conservation and replanting strategies and to determine if a germplasm collection comprising individuals from the same cross-border area captures the diversity present in the region. Nuclear simple sequence repeat (SSR) and chloroplastic DNA (cpDNA) markers were used to analyze four local wild populations and the germplasm collection which is representative of two river catchments and six legal provenance regions. Three populations distant from the studied area were also included. A panel of 14 nuclear SSR loci revealed high allelic diversity and very low differentiation among wild populations (mean F ST?=?0.014). The germplasm collection displayed a range of alleles that were representative of the different populations, and no significant differentiation between the germplasm collection and the local wild populations was observed, making this collection, as far as allelic diversity is concerned, suitable for providing trees for riverbank replanting programs. Using SSR markers, various statistical approaches consistently indicated the lack of a significant geographical structure at the level of the river catchments or provenance regions. In contrast, two cpDNA haplotypes were detected and displayed a cross-border geographically structured distribution that could be taken into account in defining new cross-border provenance regions.  相似文献   

4.
The geographic distribution of the populations of a species are influenced by the spatial structure of the ecosystems, the environmental factors and the presence of geographic barriers. The Neotropical otter, Lontra longicaudis, is widely distributed throughout the Americas, where a wide range of environmental conditions and geographical features could promote genetic and morphological variation on the three currently recognized subspecies. In this study, we combined phylogeographic, morphometric and environmental niche modelling analyses to examine whether: (1) genetic variation is associated with the presence of barriers to gene flow and/or hydrography; (2) genetic and morphologic variation are associated with environmental variation; and (3) the observed variation in L. longicaudis populations corresponds to the previously defined subspecies. We found strong phylogeographic structure between the northern (L. l. annectens) and the two-southern subspecies (L. l. longicaudis and L. l. enudris), and although shallower, we also detected genetic differentiation between the two South American subspecies. Such genetic differentiation corresponds to the hydrography and to the geographical barriers characteristic of the distributional area of the species. We found a correlation between the shape of the skull and mandible with the environmental variation through the distribution of the species, and we rejected the hypothesis of niche equivalency and similarity between the three identified genetic lineages, suggesting adaptations to different environmental conditions. Our results support that the variation in environmental conditions, in concert with geographical barriers to gene flow and hydrography, have led to population divergence of L. longicaudis along the Neotropics. These results have important taxonomic implications for the species and its conservation.  相似文献   

5.
Genetic diversity and population structure of 88 Chinese Lentinula edodes strains belonging to four geographic populations were inferred from 68 Insertion-Deletion (InDel) and two simple sequence repeat (SSR) markers. The overall values of Shannon’s information index and gene diversity were 0.836 and 0.435, respectively, demonstrating a high genetic diversity in Chinese L. edodes strains. Among the four geographic populations, the Central China population displayed a lower genetic diversity. Multiple analyses resolved two unambiguous genetic groups that corresponded to two regions from which the samples were collected—one was a high-altitude region (region 1) and the other was a low-altitude region (region 2). Results from analysis of molecular variance suggested that the majority of genetic variation was contained within populations (74.8 %). Although there was a strong genetic differentiation between populations (F ST ?=?0.252), the variability of ITS sequences from representative strains of the two regions (<3 %) could not support the existence of cryptic species. Pairwise F ST values and Nei’s genetic distances showed that there were relatively lower genetic differentiations and genetic distances between populations from the same region. Geographic distribution could play a vital role in the formation of the observed population structure. Mycelium growth rate and precocity of L. edodes strains displayed significant differences between the two regions. Strains from region 2 grew faster and fructified earlier, which could be a result of adaptation to local environmental factors. To the best of our knowledge, this was the first study on the genetic structure and differentiation between populations, as well as the relationship between genetic structure and phenotypic traits in L. edodes.  相似文献   

6.
The aim of this study was to assess the genetic variation and population structure of the geophyte Leucojum aestivum L. across the Po river valley (N-Italy), to inform conservation management actions with the selection of most suitable source populations for translocation purposes. L. aestivum is self-incompatible and occurs in S-Europe in fragmented wetlands and lowland forests along rivers. The species is particularly interesting for habitat restoration practices for its simplicity of ex situ conservation and cultivation. AFLP analyses were carried out on 16 fragmented populations, using four primer combinations. Correlations between genetic variation and demographic and ecological traits were tested. AFLP produced a total of 202 bands, 95.5% of which were polymorphic. Our results suggest that L. aestivum holds low to moderate levels of genetic diversity (mean Nei’s genetic diversity: H?=?0.125), mostly within-population. We found a gradient of two main biogeographic groups along western and eastern populations, while the STRUCTURE analysis found that the most likely number of clusters was K?=?3, shaping a partially consistent pattern. We explain the unusual negative correlation between genetic variation and population size with the high rate of vegetative reproduction. The levels of population differentiation suggest that fragmentation in L. aestivum populations has occurred, but that an active gene flow between fragmented populations still exists, maintained by flooding events or pollinators. Conservation management actions should improve habitat connectivity, especially for pollinators that vehicle upstream gene flow. Moreover, the west–east structure due to the lithological composition of the gravel and sand forming the alluvial plain of the Po river, should be considered when selecting source populations for translocation purposes.  相似文献   

7.
The population genetic variation of the tetraploid species Oxytropis chankaensis Jurtz. (Fabaceae), a local endemic of the western coast of Khanka Lake (Primorye), was examined. Five populations were analyzed using 28 isozyme loci encoding 16 enzyme systems. Significant allelic heterogeneity among the populations was found for six out of twelve polymorphic loci. The heterozygosity of the samples (total sample size 294 plants) H e = 0.301 was considerable higher than the mean values in populations of endemic species (0.076). Based on the results of this study, we identified two groups of O. chankaensis populations (southern and northern), in spite of the absence of marked hiatus between them. Of special interest is the population from Przhewalski Spit, which is a natural reserve of genetic diversity of the species and the putative center of formation of the autotetraploid O. chankaensis.  相似文献   

8.
The present study sought to identify general patterns of genetic variability and structure of fish stocks (migratory and non-migratory species) along one of the largest Brazilian rivers, the São Francisco. Given that genetic variability of populations of all organisms is governed by both present and past influences, herein we investigate both these aspects by evaluating the current genetic differences between populations of five species (Leporinus piau, Megaleporinus reinhardti, Pimelodus maculatus, Prochilodus argenteus, and Pygocentrus piraya) along the entire extension of the river, as well as their demographic history. Analyses were done through sequences of two mitochondrial fragments and microsatellite data. In general, the data showed no support for recent fragmentation of stocks by the dams present in this river, and that all species show signs of past population expansion. We discuss the possible reasons for the common patterns found between these species, including the influence of the river’s topography and history.  相似文献   

9.
Polar cod, Boreogadus saida, is a key species in Arctic marine ecosystems; however, its genetic population structure is largely undescribed. The population genetic structure of 472 B. saida specimens among nine locations in the north-east Atlantic was revealed using 12 microsatellite loci. Pairwise F ST comparisons showed significant population differentiation between B. saida sampled inside fjords in Svalbard and north-east Greenland, as compared to B. saida from the shelf. The observed genetic variation was not a function of isolation by distance, and it is speculated that B. saida populations inhabiting fjords may have become reproductively isolated from shelf-dwelling B. saida during the last post-glacial recolonization.  相似文献   

10.
RAPD and ISSR analyses revealed genetic diversity and relationships among 11 populations of two closely related northeast China Vicia species, Vicia ramuliflora and V. unijuga. Both methods yielded similar and complementary results, showing high genetic diversity. Vicia ramuliflora had 100% polymorphic loci in both RAPD and ISSR, and V. unijuga had 100% polymorphic loci for RAPD and 98.96% for ISSR. Genetic differentiation was moderate among populations of each species. Genetic variation was distributed mainly within populations for the two species. The high level of gene flow was important for the allocation of genetic variation. The UPGMA dendrogram and principal coordinates analysis at the level of individuals and populations showed that V. ramuliflora and V. unijuga were more closely related than either of them was to the outgroup species, V. cracca. The small molecular variance of V. ramuliflora and V. unijuga supports the conclusion that these two species had a common ancestor.  相似文献   

11.
Plant species that are capable of propagating clonally are expected to be less vulnerable to habitat fragmentation due to their long life span. Cypripedium calceolus L. is a rare, clonal, long-lived orchid species. It has suffered marked decline because of habitat loss and fragmentation and over-collection, yet an IUCN report on this species does not regard fragmentation as a major threat to the species. We applied 13 nuclear microsatellites and cpDNA sequences to identify the patterns of population structure, genetic diversity and connectivity of six remnant local populations of C. calceolus in highly fragmented Gdańsk Pomerania region (N Poland). Despite severe (80%) loss of localities in the studied area we found that the local populations retain high levels of clonal (R 0.86–1) and genetic diversity (He = 0.572). However, their differentiation is relatively high (FST = 0.132 for nuclear SSR and FST = 0.363 for cpDNA) despite close geographic proximity (0.6–57 km). Bayesian clustering classified populations according to their geographic origin with little admixture. Low genetic connectivity between the remnant populations shows that the current gene flow is too low to serve as a cohesive force in a fragmented habitat, which may impede a quick response to environmental change. The species’ ability to retain ancestral variation may help withstand fragmentation, but in the light of observed extirpation rate it should be rather considered as a factor that only delays local populations’ extinction. This leads to the conclusion that habitat loss and fragmentation should be regarded as a real threat to stability of C. calcelolus populations.  相似文献   

12.
Human activity and land use changes in the past decades have led to landscape homogenization and small-scale fragmentation of grassland habitats in most regions of central Europe. As a result, populations of many grassland species are small and strongly fragmented, facing extinction due to genetic depauperation and local maladaptation in remnant habitats. In this study, remaining populations of the strongly endangered grassland species Dianthus seguieri ssp. glaber (“Ragged Pink”) in Bavaria were investigated in order to evaluate the environmental factors influencing its genetic variation and performance. We first evaluated habitat, vegetation and population structure. Species performance was then studied by assessing the number of generative shoots, flowers and fertile capsules; and evaluating seed weight and seed viability. Finally, genetic variation was analyzed using molecular markers (AFLPs). Our analyses revealed that population size and land use abandonment have the strongest impact on genetic variation and species’ performance. Large and extended populations were most variable. 72 % of overall genetic variability of Dianthus seguieri ssp. glaber was found to be within populations, whereas 28 % remained between populations. Increased vegetation height and coverage, and a high proportion of gramineous species resulting from the lack of land use, reduced genetic variation, effective fruit and seed set. Our study shows that both population size and land use abandonment need to be considered to ensure the long term protection of endangered plant species. Maintaining an open habitat structure and adequate soil nutrient conditions through targeted annual mowing regime, over-storey vegetation trimming and green waste removal and the establishment of vegetation buffer strips will allow this species’ persistence and continuous recruitment.  相似文献   

13.
Freshwater sponges play a major role in freshwater ecological system as important filter-feeding organisms and bioindicators. There are only few data about their ecological diversity and population genetic structure available, though a deeper knowledge is needed to propose proper conservation and effective management. The aim of this study was to assess data on distribution patterns of freshwater sponges to study the connectivity of genotypes of Ephydatia fluviatilis in a river system. We sampled specimens from River-Sieg system (River Agger and River Sieg, Germany). We hypothesized that strong anthropogenic influence would cause a uniform distribution of population structures. The genetic structure of E. fluviatilis populations was analysed with a set of eleven microsatellite loci from seven locations in River-Sieg system. Besides of E. fluviatilis, three other species co-occurred (Ephydatia mülleri, Spongilla lacustris, Eunapius fragilis). In contrast to our hypothesis, we observed an overall correlation between genetic and geographic distances among populations of this sessile species, which follows a clear isolation-by-distance pattern. A significant microsatellite polymorphism and high levels of genetic divergence between populations (FST) in upstream reaches were present. These results will provide important information for conservation management of populations with limited dispersal ability in connected river systems.  相似文献   

14.
Major histocompatibility complex (MHC) genes are excellent markers for the study of adaptive genetic variation occurring over different geographical scales. The Chinese egret (Egretta eulophotes) is a vulnerable ardeid species with an estimated global population of 2600–3400 individuals. In this study, we sampled 172 individuals of this egret (approximately 6 % of the global population) from five natural populations that span the entire distribution range of this species in China. We examined their population genetic diversity and geographical differentiation at three MHC class II DAB genes by identifying eight exon 2 alleles at Egeu-DAB1, eight at Egeu-DAB2 and four at Egeu-DAB3. Allelic distributions at each of these three Egeu-DAB loci varied substantially within the five populations, while levels of genetic diversity varied slightly among the populations. Analysis of molecular variance showed low but significant genetic differentiation among five populations at all three Egeu-DAB loci (haplotype-based ?ST: 0.029, 0.020 and 0.042; and distance-based ?ST: 0.036, 0.027 and 0.043, respectively; all P < 0.01). The Mantel test suggested that this significant population genetic differentiation was likely due to an isolation-by-distance pattern of MHC evolution. However, the phylogenetic analyses and the Bayesian clustering analysis based on the three Egeu-DAB loci indicated that there was little geographical structuring of the genetic differentiation among five populations. These results provide fundamental population information for the conservation genetics of the vulnerable Chinese egret.  相似文献   

15.
Metal toxicity is a major abiotic stressor of plants. It has been established that changes in genetic variation occur very rapidly in plants in response to environmental stressors such as increased levels of metals. Quercus rubra (red oak) is a pioneer species in mining regions contaminated with metals in Northern Ontario (Canada). The objectives of the study were to (1) determine the level of genetic variation in Q. rubra populations from mining damaged ecosystems using RAPD marker system and (2) assess the level of gene expression of candidate genes for nickel resistance. Total gene diversity (HT) and the mean gene diversity among populations (HS) were 0.22 and 0.19, respectively. The percent of polymorphic loci within populations was high ranging from 61 % (Capreol) to 72 % (Daisy Lake) despite a high level of gene flow (2.4). The population differentiation (GST) value was low (0.17). No significant difference was found among the contaminated and reference sites for all the genetic parameters estimated. Hence, all the Q. rubra populations from the metal-contaminated and damaged ecosystems are genetically sustainable. Moreover, this study reveals that all populations were genetically closely related with genetic distance values varying from 0.17 to 0.35. A zinc finger protein of Arabidopsis thaliana (ZAT11) gene involved in nickel resistance was differentially expressed in samples analyzed. There was a 120 times higher of ZAT11 expression in samples from metal contaminated areas of Wahnapitae Dam compared to other metal contaminated and uncontaminated sites, but no association between soil metal levels and expression of ZAT11 was established.  相似文献   

16.
The genetic variation in four populations of Adenophora lilifolia (L.) DC., a rare plant species of the Perm region, was analyzed using 56 ISSR markers. The characteristics of DNA polymorphism and population genetic diversity were determined. These data demonstrate a high level of DNA polymorphism (P 95 = 82.14%). The studied A. lilifolia populations are weakly differentiated; the intrapopulation variation is the main contributor to the genetic variation.  相似文献   

17.
The fluvial eight-barbel loach Lefua sp. 1 is an undescribed species distributed from the Kinki to Chugoku districts, Honshu, and also on Shikoku Island, Japan. Genetic relationships among local populations are unclear and management units remain undetermined. To aid conservation, we determined genetic population structures from microsatellite loci for 20 populations from three river systems on Honshu. The genetic diversity within populations is relatively low; the majority has experienced genetic bottlenecks. Statistical analysis revealed significant divergence among river systems suggesting that each should be recognized as a management unit. Any conservation program should consider the populations’ genetic uniqueness.  相似文献   

18.
The European black poplar (Populus nigra L.) is an ecologically and economically important tree species for Turkey. The important and major genetic resources of species for future breeding and ex situ conservation purposes have been archived in a clone bank in Ankara by selecting clones from natural populations and old plantations throughout Turkey. There is no study to date assessing genetic composition these materials. Two-hundred-thirty-three P. nigra clones from six geographic region of Turkey (clone collection populations), and 32 trees from two natural populations (Tunceli and Melet) were genotyped by using 12 nuclear microsatellite DNA markers. There were nine clones which duplicated in various frequencies. The analysis carried out with removal of the duplicated clones revealed a moderately high genetic diversity in studied populations. The observed heterozygosities ranged from 0.59 in Tunceli natural to 0.69 in Central Anatolia clone collection populations. In general, there was excess of heterozygosity in the studied populations. Populations composed of clone collections were significantly differentiated from natural populations (F ST = 0.17), while there was little differentiation among those populations in the clone collection (F ST = 0.03). Two distantly located natural populations with small sizes also differed from each other (F ST = 0.17). Genetic structure analysis revealed two distinct groups (clone collection vs natural populations) with very high membership values (>92%). Clone collection populations had high level of admixture while natural populations had homogenous genetic structure. The presence of large number of clonal duplication, reduced genetic differentiation, and high level of admixture in clone collection populations indicate that genetic resources of European black poplar were highly degraded through genetic erosion and pollution caused by intensive cultural practices and extensive dispersal of clonal materials. To understand genetic diversity and its structural pattern thoroughly in the six clone collection populations, a further study with extensive and systematic sampling of European black poplar populations in major river ecosystems in Turkey will be useful.  相似文献   

19.
Twenty-one populations (555 individuals) covering the entire native range of Pinus mugo Turra (dwarf mountain pine) were investigated for genetic variation scored at 13 nuclear microsatellite markers (nSSRs). The main objective of the present study was to determine the genetic structure across the present distribution of the species and locate populations of different genetic compositions. Most of the genetic variation was observed within the populations (95%). The assignment of populations based on Bayesian clustering methods revealed that the Sudeten populations of P. mugo form a separate genetic cluster. These stands have likely been established through the founder effects of Alpine migrants. The distribution and level of SSR polymorphisms, along with no evidence of isolation by distance or phylogeographic structure, indicate that the present populations of P. mugo have diverged relatively recently and originate from a larger glacial distribution of the species. One peripheral stand from Italy had the lowest values of most calculated genetic variation indices. This stand could therefore be more susceptible to genetic drift and a negative impact of predicted environmental changes. We discuss our findings with respect to previously published results on the genetic and morphological variation of P. mugo and with consideration for the conservation genetics of the species.  相似文献   

20.
Identification of population units is crucial for management and monitoring programs, especially for endangered wild species. The roughskin sculpin (Trachidermus fasciatus Heckel) is a small catadromous fish and has been listed as a second class state protected aquatic animal since 1988 in China. To achieve sustainable conservation of this species, it is necessary to clarify the existing genetic structure both between and within populations. Here, population genetic structure among eight populations of T. fasciatus were analyzed by using 16 highly polymorphic microsatellites. High levels of genetic variation were observed in all populations. All pairwise F ST estimates were significant after false discovery rate correction (overall average F ST = 0.054). Furthermore, both STRUCTURE and discriminant analysis of principal components (DAPC) analysis showed that the eight populations were grouped into six clusters. BAYESASS analysis showed generally low recent and asymmetric migration among populations. All these results suggested significant genetic structure across populations. However, there was no isolation by distance relationship among populations, likely resulting from barriers to gene flow created by habitat fragmentation. Our results highlight the need for in situ conservation efforts for T. fasciatus across its entire distribution range, through maximizing habitat size and quality to preserve overall genetic diversity and evolutionary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号