首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The components of the antioxidant defense (AOD) system were analyzed in 74 male and female adolescents representing small ethnic groups that inhabit the territory of Eastern Siberia. Our findings indicate a dependence of the antioxidant status indicators on gender and ethnic identity of test subjects. More adaptive variants of the AOD system’s functioning were found in Tofalar boys (elevated levels of fat-soluble vitamins, increased glutathione system activity), whereas Evenk boys were characterized by a decreased activity of antioxidant factors (low α-tocopherol and retinol supply, glutathione system imbalance), as compared both to girls and Tofalar boys. The changes revealed in this group were also supported by increased values of the oxidative stress index.  相似文献   

2.
There was performed a comparative evaluation of the mean values of lipid metabolism parameters in youths and girls of the indigenous population (the Even), of the coming population of the north of Irkutsk province, and of the province center (the Europeoids). Gender differences in HDLP have been revealed in adolescents of the coming population, in the glutathione status and the content of liposoluble vitamins in the Even and coming adolescents and in retinol concentration in the province center adolescents. Adaptive changes in the ROS system were found in the Even girls (the higher α-tocopherol and GSH concentrations and the GSH/GSSG ratio as well as a decrease of GSSG relative to the Even youths and the coming population girls, an increase of α-tocopherol relatively to the coming population Europeoids) and youth of the coming population (the higher GSH content and the GSH/GSSG parameter relatively to the Even youths).  相似文献   

3.
Specific features of indicators of the thyroid status and blood serum lipoprotein level were revealed in girls and women of the Buryat ethnos and Europeoid race. Buryat versus Europeoid females develop adaptive responses of the pituitary-thyroid part of the neuroendocrine regulatory system (increased free T3 levels in girls and decreased TTH levels in women). Changes in lipid metabolism indicators consist in lower levels of atherogenic cholesterol fractions in Buryat girls and higher levels of cholesterol-containing blood components in Europeoid adolescents. At the older ages, an inverse tendency is observed, characterized by a higher activity of lipid metabolism in females of the indigenous nationality.  相似文献   

4.
ABSTRACT

A comparative analysis of lipid peroxidation processes and antioxidant defense system in Caucasian menopausal women with/without insomnia depending on the genotype of Clock 3111T/C gene polymorphism was performed. Two hundred and fourteen Caucasian menopausal women divided into control (without insomnia) and main group (with insomnia) were examined. Lipid peroxidation (conjugated dienes, thiobarbituric acid reactants) and antioxidant defense system parameters (?-tocopherol, retinol, reduced and oxidized glutathione, glutathione S-transferase, glutathione peroxidase, glutathione reductase, superoxide dismutase) were determined by spectrofluorophotometer and immunoenzymometric methods. Patients with insomnia carriers of the TT-genotype had a significantly higher thiobarbituric acid reactants level and glutathione peroxidase activity as compared to group with insomnia carriers of the minor 3111C-allele (p < .05). A comparative analysis of the parameters in the women of the main and control groups showed higher conjugated dienes, thiobarbituric acid reactants levels and lower retinol, reduced glutathione levels, glutathione reductase activity in women with insomnia carriers of the TT-genotype (p < .05). The carriers of the minor allele with insomnia had a higher conjugated dienes levels and lower glutathione peroxidase activity as compared to control (p < .05). Thus, lipid peroxidation and antioxidant system parameters in Caucasian menopausal women with insomnia depend on the Clock 3111T/C gene polymorphism.  相似文献   

5.
Antioxidant defense system prevents the organism from the detrimental effects of free radicals via scavenging or inhibiting their formation. Changes in the antioxidant defense mechanisms and alterations of several essential trace elements in both plasma and various tissues of ob/ob mice have been reported previously. Recent finding of the restoration of the defective antioxidant enzyme activity after leptin treatment in ob/ob mice suggests a putative role of leptin in modulation of antioxidant enzyme activity. Therefore, the aim of this study was to investigate whether antioxidant enzymes and trace elements could also be altered in patients with leptin gene mutation. Seven patients (five men and two women, two of them are homozygous and 5 are heterozygous) with leptin gene mutation and 31 healthy, sex- and age-matched and non-related to the patients (24 male and 9 female), control volunteers were enrolled in the study. Plasma and erythrocyte glutathione peroxidase (GSH-Px) and erythrocyte copper-zinc superoxide dismutase (CuZn-SOD) activities were measured spectrophotometrically. Plasma selenium (Se), manganese (Mn), zinc (Zn), copper (Cu), and iron (Fe) levels were measured by atomic absorption spectrophotometry. Mean Cu and Fe levels in patients were not significantly different than those in controls whereas mean Se, Zn and Mn levels were significantly lower in patients than those of controls (P=0.007, P=0.001, and P=0.001, respectively). Erythrocyte GSH-Px (39%), plasma GSH-Px (24%) and erythrocyte CuZn-SOD activities (32%) were significantly lower than those of the control group (P=0.001, P=0.002, P=0.001, respectively). In conclusion, our results demonstrate that the activity of antioxidant enzymes and plasma levels of Se, Zn and Mn levels were decreased in both homozygous and heterozygous subjects with leptin gene mutation. We suggest that both leptin and trace elements might be involved in the modulation of antioxidant defense system.  相似文献   

6.
The glutathione-dependent system of antioxidant defense was studied in the chorionic and placental tissues of women with miscarriage. In the case of spontaneous abortion, the level of glutathione peroxidase reached the maximum even in trimester I and remained more than 1.5-fold higher during the whole gestation period than in the placental tissue of women with physiological pregnancy and delivery. The activity of glutathione reductase in miscarriage was insignificantly different from that in the control group. The activity of glutathione S-transferase in miscarriage was similar to that in the control group during trimester I and remained low during the whole gestation, contributing to a decrease in nonspecific defense in the mother-placenta-fetus system, leading to pathology of the fetus and infant. It is concluded that oxidative stress in the placental tissues is an essential pathogenic factor of miscarriage.  相似文献   

7.
We determined relationship among DNA damage, nitric oxide (NO) and antioxidant defense in leukocytes of patients with Type 1 DM. DNA damage was evaluated as strand breakage and formamidopyrimidine DNA glycosylase (Fpg)-sensitive sites by the comet assay in DNA from leukocytes of the subjects. Nitrite level, as a product of NO, superoxide dismutase (SOD) activity and glutathione peroxidase (G-Px) activity of the leukocytes were measured by spectrophotometric kits. Serum glucose level and glycosylated haemoglobin (HbA(1c)) were higher in the patients, as expected. Differences in measured parameters between controls and patients were assessed in men and women separately. There was no significant difference between patient and control groups in neither men nor women for nitrite level. Strand breakage and Fpg-sensitive sites were found to be increased, SOD and G-Px activities of the leukocytes were found to be decreased in both men and women of patient group as compared to their respective controls. Significant correlations were determined between strand breakage and HbA(1c) (r = 0.37, P<0.05); Fpg-sensitive sites and HbA(1c) (r = 0.59, P<0.01); Fpg-sensitive sites and glucose (r = 0.45, P<0.02); Fpg-sensitive sites and SOD (r = -0.48, P<0.02); HbA(1c) and SOD (r = -0.50, P<0.02). In conclusion, impaired antioxidant defense in leukocytes of patients with Type 1 DM may be one of the responsible mechanisms for increased DNA damage in those patients.  相似文献   

8.
Modulation of different antioxidants, total phenolics, lipid peroxidation, and protease activity as a result of mannose treatment (1%) was studied in leaves of etiolated wheat seedlings. Changes in these biochemicals were monitored up to 96 h after treatment at 24-h intervals. Mannose treatment induced a significant increase in protease activity throughout the scanning period, coupled with a gradual decrease in leaf protein content. Membrane lipid peroxidation (MDA content) was higher at 24 and 72 h after treatment. MDA content remained higher for a longer period due to mannose treatment. During the initial 24 h of mannose treatment, only catalase and total phenolic contents were increased. Catalase activity was down regulated with increasing duration of treatment. On the other hand, peroxidase (POD, APX) activities were initially unaffected but increased with increasing treatment duration. The decreased level of lipid peroxidation at 96 h may be due to detoxification of H2O2 by peroxidases. Superoxide dismutase activity was not affected by mannose treatment. In conclusion, evidence is provided that mannose can modulate the expression of the enzymatic antioxidant defense system in wheat leaves.  相似文献   

9.
Phytotoxicity of aluminum (Al) is the major limiting factor for the crops grown in acid soils rapidly inhibiting root elongation. In this study, changes in root growth, total activity and isozyme patterns of antioxidant enzymes such as peroxidase, ascorbate peroxidase, catalase and glutathione reductase by Al stress were investigated in the roots of naked barley (Hordeum vulgare L. cv. Kwangwhalssalbori). As Al concentration increased up to 500 M, the rooting rate and root elongation substantially decreased. Growth results suggested that this cultivar is an Al-sensitive species. Total activities of antioxidant enzymes generally increased at lower Al concentrations and then gradually decreased at higher Al concentrations. They also increased when the exposure time to Al was extended up to 48 hr. Changes in the isozyme patterns of antioxidant enzymes were investigated byin situ enzyme activity staining on a non-denaturing PAGE gel. They generally coincided with the changes in the total activity in parallel. Changes in the total activity of antioxidant enzymes also coincided with the changes of the root growth. Since growth reduction in the roots by Al stress could be related with the changes in the activities of antioxidant enzymes, these results suggested that Al might cause the oxidative stress in the roots of this cultivar of naked barley.  相似文献   

10.
11.
Changes in the activity of so-called oxidative stress defensive enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase and heme oxygenase, as well as changes in lipid peroxidation and reduced glutathione levels, were measured in guinea pig and rat liver after acute cobalt loading. Cobalt chloride administration produced a much higher degree of lipid peroxidation in guinea pig than in rat liver compared with the control animals. The intrahepatic reduced glutathione content in control guinea pig was higher than that in rat, but was equally decreased in both species after cobalt administration. The enzymatic scavengers of free radicals, superoxide dismutase, catalase and glutathione peroxidase, were significantly decreased in rat liver after acute cobalt loading, and as a compensatory reaction, the heme oxygenase activity was increased (seven-fold). In guinea pig liver, only superoxide dismutase activity was depleted in response to cobalt-induced oxidative stress, while catalase and glutathione peroxidase were highly activated and the heme oxygenase activity was dramatically increased (13-fold). It is assumed that enhanced heme oxygenase activity may have important antioxidant significance by increasing the liver oxidative-stress defense capacity.  相似文献   

12.
Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17–40 years), adult (41–65 years) and aged (66–91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66–91 year-old vs. the 17–40 year-old men; MnSOD activity was significantly greater in 66–91 year-old vs. 17–40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41–65 and 66–91 year-old vs. the 17–40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.  相似文献   

13.
Previous studies, conducted on experimental animals, have indicated that reactive oxygen species (ROS) are involved in the aging process. The objective of this work was to study the relationship between oxidative damage and human skeletal muscle aging, measuring the activity of the main antioxidant enzymes superoxide dismutase (total and MnSOD), glutathione peroxidase (GPx) and catalase in the skeletal muscle of men and women in the age groups: young (17-40 years), adult (41-65 years) and aged (66-91 years). We also measured glutathione and glutathione disulfide (GSH and GSSG) levels and the redox index; lipid peroxidation and protein carbonyl content. Total SOD activity was lower in the 66-91 year-old vs. the 17-40 year-old men; MnSOD activity was significantly greater in 66-91 year-old vs. 17-40 year-old women. GPx activity remained unchanged. The activity of catalase was lower in adults than in young men but higher in the aged. We observed no changes in GSH levels and significantly higher GSSG levels only in aged men vs. adult men, and a significant decrease in aged women vs. aged men. The protein carbonyl content increased significantly in the 41-65 and 66-91 year-old vs. the 17-40 year-old men. Finally, young women have lower lipid peroxidation levels than young men. Significantly higher lipid peroxidation levels were observed in aged men vs. both young and adult men, and the same trend was noticed for women. We conclude that oxidative damage may play a crucial role in the decline of functional activity in human skeletal muscle with normal aging in both sexes; and that men appear to be more subject to oxidative stress than women.  相似文献   

14.
The pro- and antioxidant statuses of apparently healthy adolescent Tofalar and Evenks of both sexes has been estimated and compared to those of the newcomer Caucasian people. Both girls and boys display an activation of adaptive-compensatory response relative to Caucasian newcomers, which manifests itself as a statistically significant increase in nonenzymatic components of the antioxidant defense system.  相似文献   

15.
Coenzyme Q10(CoQ10) in human milk at different stages of maturity in mothers of preterm and full-term infants and its relation to the total antioxidant capacity of milk is described for the first time. Thirty healthy breastfeeding women provided colostrum, transition-milk and mature-milk samples. Coenzyme Q, alpha-, gamma- and delta-tocopherol, fatty acids and the total antioxidant capacity of the milk were analyzed. Coenzyme Q10 was found at higher concentrations for colostrum (0.81+/-0.06 vs. 0.50+/-0.05 micromol/l) and transition milk (0.75+/-0.06 vs. 0.45+/-0.05 micromol/l) in the full-term vs. the preterm group (similar results were found for total antioxidant capacity). Concentrations of alpha- and gamma-tocopherol were higher in the full-term group and decreased with time. In conclusion, CoQ10 is present in breast milk, with higher concentration in mothers of full-term infants. CoQ10 in breast milk decreases through lactation in mothers delivering full-term infants. Also, CoQ10, alpha- and gamma-tocopherol concentration in human milk directly correlates with the antioxidant capacity of the milk.  相似文献   

16.
Blood glutathione redox status in gestational hypertension   总被引:4,自引:0,他引:4  
Gestational hypertension during the third trimester reflects an exaggerated maternal inflammatory response to pregnancy. We hypothesized that oxidative stress present even in normal pregnancy becomes uncompensated in hypertensive patients. A glucose-6-phosphate dehydrogenase (G6PD) activity sufficient to meet the increased reductive equivalent need of the cells is indispensable for defense against oxidative stress. The erythrocyte glutathione redox system was studied, where G6PD is the only NADPH source. The glutathione (GSH) redox status was measured both in vivo and after an in vitro oxidative challenge in pregnant women with gestational hypertension (n = 19) vs. normotensive pregnant subjects (n = 18) and controls (n = 20). An erythrocyte GSH depletion with an increase in the oxidized form (GSSG) resulted in an elevated ratio GSSG/GSH (0.305 +/- 0.057; mean +/- SD) in hypertensive pregnant women vs. normotensive pregnant or control subjects (0.154 +/- 0.025; 0.168 +/- 0.073; p <.001). In hypertensive pregnant patients, a "GSH stability" decrease after an in vitro oxidative challenge suggested a reduced GSH recycling capacity resulting from an insufficient NADPH supply. The erythrocyte GSSG/GSH ratio may serve as an early and sensitive parameter of the oxidative imbalance and a relevant target for future clinical trials to control the effects of antioxidant treatment in women at increased risk of the pre-eclampsia syndrome.  相似文献   

17.
Background: Lungs are exposed to high levels of oxygen, air pollutants, and smoke, all of which stimulate the production of reactive oxygen species (ROS). In addition, inflammatory cells produce ROS, and thus there may be increased demand for antioxidants, including antioxidant enzymes, in inflammatory lung diseases such as asthma. Sex-specific differences have been noted for asthma, which in postpubertal subjects is predominantly found in females. These sex-specific differences may be associated with differences on the molecular level as well.Objective: The aim of this cross-sectional study was to examine associations between markers of antioxidative defense and asthma, and to investigate whether these associations were different between women and men.Methods: Based on the European Community Respiratory Health Survey protocol, subjects were enrolled in a study of asthma risk factors. The multicenter study was conducted in 5 west Danish counties between 2003 and 2006, and the subjects were recruited as a case-enriched random sample of 10,000 Danish inhabitants aged 20 to 44 years selected by their civil registration number. Participants were identified by positive answers to asthma questions on a screening questionnaire, random sampling, or both. Serum selenium concentrations and antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase [GPX], glutathione reductase [GR], and glucose-6-phosphate dehydrogenase [G6PD]) in erythrocytes were measured. Asthma was defined as either current asthma symptoms with bronchial hyperresponsiveness (BHR) or a continuous asthma score based on 8 questions.Results: A total of 1191 mostly white women and men (mean [SD] age, 34.0 [7.1] and 35.1 [7.1] years, respectively) were enrolled in the study. Current asthma symptoms were present in 29.9% (200/670) of women and 22.5% (117/521) of men, with women reporting more positive answers (51.1% vs 40.9%, respectively; P < 0.01) to asthma questions. Serum selenium concentrations were measured in 1151 subjects (640 women, 511 men), and antioxidant enzyme activities were measured in 295 subjects (161 women, 134 men). Women had higher enzyme activities of most antioxidant enzymes (GPX, P = 0.006; GR, P < 0.001; and G6PD, P = 0.009) than did men. Although the serum selenium concentration was inversely associated with asthma in both sexes, there was a female preponderance, with 3.5% lower serum selenium in subjects with current asthma symptoms with BHR (n = 77) compared with controls (n = 287). GR activity was associated with asthma in men, with 5.7% higher enzyme activity in subjects with current asthma symptoms with BHR (n = 14) compared with controls (n = 77). However, a significant interaction with gender was observed for analyses of GR (P = 0.02), but not for analyses of selenium.Conclusions: In this study of asthma risk factors, women had higher levels of enzyme activities than did men in a randomly selected Danish population, and sex-specific differences were found in the associations between markers of antioxidative defense and asthma.  相似文献   

18.
The pro-and antioxidant systems of the human placenta have been studied in its central and peripheral areas in the state of dysfunction. It has been shown that the intensity of free-radical oxidation (FRO) is 24% higher (p < 0.05) in mitochondria isolated from peripheral placental areas in the case of preterm termination of pregnancy than in placental mitochondria of women with normal pregnancy ending in delivery on due dates. The values of total antioxidant activity in mitochondria isolated from the central and peripheral areas of placentae of women with preterm labor exceeded 1.5-and 1.8-fold the respective values for the placental mitochondria of women with the normal duration of pregnancy. The rate of glutathione peroxidase activity in placental mitochondria of women with preterm labor was lower than in patients with normal duration of pregnancy terminated on due dates. Higher values of intensity of both the FRO processes and the active components of thiobarbituric acid (TBA) were recorded (higher by 42% and 62%, respectively) in the postmitochondrial fraction in the peripheral area of placentae of women with spontaneous termination of pregnancy, compared with the placentae of women with uncomplicated duration of pregnancy with labor on due date. No differences have been observed in the intensity of oxidative modification of placental proteins in both the periphery and the center in the placentae of women from the studied groups. The rate of glutathione peroxidase activity in the placenta of women with spontaneous termination of pregnancy was more than twice as high as the activity of this enzyme during the first trimester of normal pregnancy and remained high during the second and third trimesters. The activity of the enzyme did not depend on its localization (center or periphery) in placentae of women participating in the study. The values of glutathione transferase activity in the placentae increased in the course of normal pregnancy but remained at the level of the first trimester in the central and peripheral areas in the case of a miscarriage at different gestational terms. Our findings allow us to suggest that oxidative stress developing in placenta from its center to periphery plays a key role in the pathogenesis of placental dysfunction, mainly, due to the glutathione-dependent component of the placental antioxidant defense.  相似文献   

19.
Changes of the activity of catalase and glucose-6-phosphate dehydrogenase (G6PDH) during 48 hrs after intraperitoneal injection of 1.0, 0.5 and 0.1 mg aminotriazole per gram of body weight of two frog species as well as catalase inhibition by aminotriazole in vitro were investigated. Both aminotriazole concentration and species affiliation affected the catalase inhibition. The sensitivity of catalase from different tissues was decreased in the order: liver--kidney--lung--muscle--brain. The constant of half inhibition of lung catalase was significantly lower than that of liver and kidney catalase. The activity of G6PDH of AMT-treated frogs R. esculenta was higher comparing to control group. Possible ways of compensation of antioxidant defense under catalase inhibition are discussed.  相似文献   

20.
The erythrocytes represent an important source of antioxidant capacity of the blood. Catalase (EC 1.11.1.6.) is one of the enzymatic components of their antioxidant defense system. The objective of this study was to follow erythrocyte catalase (CAT) in 7-, 15-, 21-, 35-, 60- and 90-day-old Wistar rats of both sexes in normoxia and after exposure to intensive acute hypobaric hypoxia. During the development CAT activity increases in both sexes, but the rise was usually higher in females. Hypobaric hypoxia increased CAT activity in all studied age groups of both sexes. However, higher CAT activity in females was less affected by hypoxia than the lower activity in males. This was true for nearly all age groups studied. It can be concluded that both ontogenetic aspects and sex differences play a major role in establishing the activity of CAT, which is an important part of the antioxidant defense of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号