首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Flash photolysis of the membrane-bound cytochrome oxidase/carbon monoxide compound in the presence of oxygen at low temperatures and in the frozen state leads to the formation of three types of intermediates functional in electron transfer in cytochrome oxidase and reduction of oxygen by cytochrome oxidase. The first category (A) does not involve electron transfer to oxygen between -125 degrees and -105 degrees, and includes oxy compounds which are spectroscopically similar for the completely reduced oxidase (Cu1+alpha3(2+)-O2) or for the ferricyanide-pretreated oxidase (Cu2+alpha3(3+)-O2). Oxygen is readily dissociated from compounds of type A. The second category (B) involves oxidation of the heme and the copper moiety of the reduced oxidase to form a peroxy compound (Cu2+alpha 3(3+)-O2=or Cu2+alpha3(2+)-O2H2) in the temperature range from -105 degrees to -60 degrees. Above -60 degrees, compounds of type B serve as effective electron acceptors from cytochromes a, c, and c1. The third category (C) is formed above -100 degrees from mixed valency states of the oxidase obtained by ferricyanide pretreatment, and may involve higher valency states of the heme iron (Cu2+alpha3(4+)-O2=). These compounds act as electron acceptors for the respiratory chain and as functional intermediates in oxygen reduction. The remarkable features of cytochrome oxidase are its highly dissociable "oxy" compound and its extremely effective electron donor reaction which converts this rapidly to tightly bound reduced oxygen and oxidized oxidase.  相似文献   

2.
The role of zinc in beef heart cytochrome c oxidase has been studied by using x-ray absorption spectroscopy, zinc depletion and secondary structure predictions of subunits of beef heart cytochrome c oxidase. The stoichiometry of zinc in cytochrome oxidase has been determined in 35 different preparations and found to be one-half of copper (Cu:Zu = 2:1). Zinc is tightly bound to this enzyme and cannot be removed by dialysis against EDTA. However, zinc could be partially (up to 50%) depleted by treating the enzyme with either dipicolinic acid or by trypsin digestion. This partial depletion of zinc does not change the O2 uptake rate. X-ray absorption spectroscopy shows that the atom is in a distorted tetrahedral environment with mostly sulfur ligands. Since subunit VIa removed by the digestion removes about one-half the zinc, a possible binding site involves the two S sites present in that subunit with an appropriate folding in a structural role.  相似文献   

3.
The structure of the CuA-containing, extracellular domain of Thermus thermophilus ba3-type cytochrome c oxidase has been determined to 1.6 A resolution using multiple X-ray wavelength anomalous dispersion (MAD). The Cu2S2 cluster forms a planar rhombus with a copper-copper distance of 2.51 +/- 0.03 A. X-ray absorption fine-structure (EXAFS) studies show that this distance is unchanged by crystallization. The CuA center is asymmetrical; one copper is tetrahedrally coordinated to two bridging cysteine thiolates, one histidine nitrogen and one methionine sulfur, while the other is trigonally coordinated by the two cysteine thiolates and a histidine nitrogen. Combined sequence-structure alignment of amino acid sequences reveals conserved interactions between cytochrome c oxidase subunits I and II.  相似文献   

4.
Sco1 is a conserved essential protein, which has been implicated in the delivery of copper to cytochrome c oxidase, the last enzyme of the electron transport chain. In this study, we show for the first time that the purified C-terminal domain of yeast Sco1 binds one Cu(I)/monomer. X-ray absorption spectroscopy suggests that the Cu(I) is ligated via three ligands, and we show that two cysteines, present in a conserved motif CXXXC, and a conserved histidine are involved in Cu(I) ligation. The mutation of any one of the conserved residues in Sco1 expressed in yeast abrogates the function of Sco1 resulting in a non-functional cytochrome c oxidase complex. Thus, the function of Sco1 correlates with Cu(I) binding. Data obtained from size-exclusion chromatography experiments with mitochondrial lysates suggest that full-length Sco1 may be oligomeric in vivo.  相似文献   

5.
Copper K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structural details of the coordination environment of the copper sites in eight resting-state samples of beef heart cytochrome c oxidase prepared by different methods. The unusual position and structure of the resting-state copper edge spectrum can be adequately explained by the presence of sulfur-containing ligands, with a significant amount of S----Cu(II) charge transfer (i.e., a covalent site). Quantitative curve-fitting analysis of the copper extended X-ray absorption fine structure (EXAFS) data indicates similar average first coordination spheres for all resting-state samples, regardless of preparation method. The average coordination sphere (per 2 coppers) mainly consists of 6 +/- 1 nitrogens or oxygens at an average Cu-(N,O) distance of 1.99 +/- 0.03 A and 2 +/- 1 sulfurs at an average Cu-S distance of 2.28 +/- 0.02 A. Quantitative curve-fitting analysis of the outer shell of the copper EXAFS indicates the presence of a Cu...Fe interaction at a distance of 3.00 +/- 0.03 A. Proposed structures of the two copper sites based on these and other spectroscopic results are presented, and differences between our results and those of other published copper XAS studies [Powers, L., Chance, B., Ching, Y., & Angiolillo, P. (1981) Biophys. J. 34, 465-498] are discussed.  相似文献   

6.
Purple Cu(A) centers are a class of binuclear, mixed-valence copper complexes found in cytochrome c oxidase and nitrous oxide reductase. An engineered Cu(A) protein was formed by replacing a portion of the amino acid sequence that contains three of the ligands to the native type I copper center of Pseudomonas aeruginosa azurin with the corresponding portion of sequence from the Cu(A) center of cytochrome c oxidase from Paracoccus denitrificans [Proc. Natl. Acad. Sci. USA 93 (1996) 461]. Oxidation-reduction midpoint potential (E(m)) values of the Cu(A) azurin of +399+/-10 and +380+/-2mV, respectively, were determined by cyclic voltammetry and spectrochemical titration. An n value of one was obtained, indicating that the redox reaction is cycling between the mixed valence and the fully reduced states. Whereas the E(m) value of native azurin is pH dependent, the E(m) value of Cu(A) azurin is not, as expected for the Cu(A) center. Similarities and differences in the redox properties are discussed in terms of the known crystal structures of Cu(A) centers in cytochrome c oxidase and Cu(A) azurin.  相似文献   

7.
Cu x-ray absorption spectroscopy (XAS) has been used to investigate the effect of cyanide treatment on the structures of the copper sites in beef heart cytochrome c oxidase. The Cu K-edge spectrum changes significantly upon cyanide binding to resting state enzyme, as does the Cu extended x-ray absorption fine structure (EXAFS) spectrum. The Cu EXAFS Fourier transfer (FT) exhibits an enhanced peak for the cyanide-treated enzyme in the region containing the Cu...Fe peak in the resting state FT (at R' approximately equal to 2.6-2.7 A). This peak in the cyanide-treated sample is hypothesized to arise from "outer shell" scattering from a linear Cu-cyanide moiety, suggesting cyanide binding to CuB only (CuB 2+-CN-) or cyanide bridging between the Fe of heme a3 and CuB (Fe3+-(CN-)-CuB 2+).  相似文献   

8.
Cytochrome c oxidase assembly process involves many accessory proteins including Cox11, which is a copper-binding protein required for Cu incorporation into the Cu(B) site of cytochrome c oxidase. In a genome wide search, a number of Cox11 homologs are found in all of the eukaryotes with complete genomes and in several Gram-negative bacteria. All of them possess a highly homologous soluble domain and contain an N-terminal fragment that anchors the protein to the membrane. An anchor-free construct of 164 amino acids was obtained from Sinorhizobium meliloti, and the first structure of this class of proteins is reported here. The apoform has an immunoglobulin-like fold with a novel type of beta-strand organization. The copper binding motif composed of two highly conserved cysteines is located on one side of the beta-barrel structure. The apoprotein is monomeric in the presence of dithiothreitol, whereas it dimerizes in the absence of the reductant. When copper(I) binds, NMR and extended x-ray absorption fine structure (EXAFS) data indicate a dimeric protein state with two thiolates bridging two copper(I) ions. The present results advance the knowledge on the poorly understood molecular aspects of cytochrome c oxidase assembly.  相似文献   

9.
A systemic study has been made of copper and heme a binding to subunits of beef heart cytochrome c oxidase. Copper and heme a were readily mobilized by ionic detergents, high ionic strengths, temperatures above 0 degrees C, thiol compounds, and gel-bound peroxides and free radicals when the subunits of the oxidase were dissociated from one another during polyacrylamide gel electrophoresis. Most subunits showed some affinity for heme a and copper under these conditions. However, in the presence of specific mixtures of ionic and nonionic detergents (e.g. 0.1% sodium dodecyl sulfate, 0.025% Triton X-100) at temperatures below 0 degrees C and in buffers of low ionic strength using 10 to 12% polyacrylamide gels preelectrophoresed for 3 days with thioglycolate, about 90% of the Cu was found on subunit II (Mr = 24,100), and heme a was found in equal amounts of subunits I (Mr = 35,800) and II. The oxidized-reduced and reduced-CO absorption spectra of these subunits resembled those of cytochrome c oxidase. It appears probable that in the native enzyme, subunit I contains heme a and subunit II contains copper and heme a. A relationship of mammalian cytochrome c oxidase to the two-subunit microbial cytochrome oxidase systems appears to exist.  相似文献   

10.
Data are presented which were collected in the course of the past ten years and bear on the correlation of absorbance at 800 nm and the EPR signal at g = 2 ('copper signal') of cytochrome c oxidase in various states of oxidation and ligation. Both EPR and optical reflectance spectra were obtained at low temperature (-170 to -190 degrees C). For some sets of samples spectra were recorded in the range 500-1100 nm. A particular efFort was made to study this correlation with what are called 'mixed valence' states (Greenwood, C., Wilson, M.T. and Brunori, M. (1974) Biochem. J. 137, 205-215), when cytochrome a and the EPR-detectable copper are thought to be oxidized and the other components reduced and vice versa. These data show no evidence that the copper component of cytochrome oxidase which has so far not been detected by EPR makes a contribution to the absorption between 800 and 900 nm exceeding 10-15% of the total, which is close to or within the error of the respective measurements. For the various states of the oxidase examined in this work the 700-800 nm region did not appear to be more useful than the 800-900 nm region for determining the state of the EPR-undetectable copper in a reliable way. These conclusions are in agreement with results presented previously from other laboratories concerning the relationship of optical (approx. 800 nm) and EPR spectroscopic (g = 2) data obtained with the enzyme.  相似文献   

11.
We have studied the linear electric field effect in pulsed EPR of the "EPR-detectable copper" signal of beef heart cytochrome c oxidase and have compared our results with those for a variety of square planar and tetrahedral Cu(II) model compounds and with Cu(II) proteins containing either type 1 or type 2 copper. The electric field induced g shifts (linear electric field effect) for cytochrome oxidase are comparable in magnitude to those for simple Cu(II) complexes and for some copper proteins containing type 2 sites. The shifts are smaller than those for tetrahedral copper complexes and for type 1 copper sites. However, the magnetic field dependence of the linear electric field effect does not resemble that observed for any Cu(II) complex studied nor for type 1 copper. These findings cannot be reconciled with the tetrahedral Cu(II) model proposed by Greenaway, Chan, and Vincow ((1977) Biochim. Biophys. Acta 490, 62-78, 1977) to explain the unusual EPR spectrum of cytochrome oxidase.  相似文献   

12.
A search of the Bacillus subtilis genome identifies a potential homolog, ypmQ, of the inner mitochondrial membrane protein Sco1 from yeast. Sco1 has been found to aid the delivery of copper to cytochrome c oxidase. B. subtilis expresses two members of the cytochrome oxidase family, a cytochrome c oxidase that has two copper centers, Cu(A) and Cu(B), and a menaquinol oxidase that has only Cu(B). Deletion of ypmQ in B. subtilis depresses expression of cytochrome c oxidase but not menaquinol oxidase. Levels of cytochrome c oxidase recover when copper is added to the growth medium of the DeltaypmQ strain or when ypmQ is expressed from a plasmid. Neither treatment affects the amount or activity of menaquinol oxidase. YpmQ in which two conserved cysteines are replaced by serines and a conserved histidine is replaced by alanine do not complement the deletion of ypmQ even though these mutant forms are found in the membrane extract at a level similar to the wild type protein. We propose that the two cysteines and the histidine are critical for the function of YpmQ and suggest they are involved in copper exchange between YpmQ and the Cu(A) site of cytochrome c oxidase.  相似文献   

13.
1. Techniques and experiments are described concerned with the millisecond kinetics of EPT-detectable changes brought about in cytochrome c oxidase by reduced cytochrome c and, after reduction with various agents, by reoxidation with O2 or ferricyanide. Some experiments in the presence of ligands are also reported. Light absorption was monitored by low-temperature reflectance spectroscopy. 2. In the rapid phase of reduction of cytochrome c oxidase by cytochrome c (less than 50 ms) approx. 0.5 electron equivalent per heme a is transferred mainly to the low-spin heme component of cytochrome c oxidase and partly to the EPR-detectable copper. In a slow phase (less than 1 s) the copper is reoxidized and high-spin ferric heme signals appear with a predominant rhombic component. Simultaneously the absorption band at 655 nm decreases and the Soret band at 444 nm appears between the split Soret band (442 and 447 nm) of reduced cytochrome a. 3. On reoxidation of reduced enzyme by oxygen all EPR and optical features are restored within 6 ms. On reoxidation by O2 in the presence of an excess of reduced cytochrome c, states can be observed where the low-spin heme and copper signals are largely absent but the absorption at 655 nm is maximal, indicating that the low-spin heme and copper components are at the substrate side and the component(s) represented in the 655 nm absorption at the O2 side of the system. On reoxidation with ferricyanide the 655 nm absorption is not readily restored but a ferric high-spin heme, represented by a strong rhombic signal, accumulates. 4. On reoxidation of partly reduced enzyme by oxygen, the rhombic high-spin signals disappear within 6 ms., whereas the axial signals disappear more slowly, indicating that these species are not in rapid equilibrium. Similar observations are made when partly reduced enzyme is mixed with CO. 5. The results of this and the accompanying paper are discussed and on this basis an assignment of the major EPR signals and of the 655 nm absorption is proposed, which in essence is that published previously (Hartzell, C.R., Hansen, R.E. and Beinert, H. (1973) Proc. Natl. Acad. Sci. U.S. 70, 2477-2481). Both the low-spin (g=o; 2.2; 1.5) and slowly appearing high-spin (g=6; 2) signals are attributed to ferric cytochrome a, whereas the 655 nm absorption is thought to arise from ferric cytochrome a3, when it is present in a state of interaction with EPR-undectectable copper. Alternative possibilities and possible inconsistencies with this proposal are discussed.  相似文献   

14.
In reoxidation experiments with cytochrome c oxidase (EC 1.9.3.1) in the presence of both reducing substrate and molecular oxygen, a new EPR signal from Cu2+ has been observed. The new signal corresponds to 0.45 Cu per functional unit. It is concluded that the new EPR signal originates from CuB2+, the copper which is EPR-nondetectable in the resting enzyme. Optical absorption changes in the 500-700 nm region accompanies the decay of the new Cu2+ EPR signal. Based on the results in this investigation a catalytic cycle for cytochrome oxidase is proposed.  相似文献   

15.
Cytochrome caa3 from Bacillus subtilis is a member of the heme-copper oxidase family of integral membrane enzymes that includes mitochondrial cytochrome c oxidase. Subunit II of cytochrome caa3 has an extra 100 amino acids at its C-terminus, relative to its mitochondrial counterpart, and this extension encodes a heme C binding domain. Cytochrome caa3 has many of the properties of the complex formed between mitochondrial cytochrome c and mitochondrial cytochrome c oxidase. To examine more closely the interaction between cytochrome c and the oxidase we have cloned and expressed the Cu(A)-cytochrome c portion of subunit II from the cytochrome caa3 complex of B. subtilis. We are able to express about 2000 nmol, equivalent to 65 mg, of the Cu(A)-cytochrome c protein per litre of Escherichia coli culture. About 500 nmol is correctly targeted to the periplasmic space and we purify 50% of that by a combination of affinity chromatography and ammonium sulfate fractionation. The cytochrome c containing sub-domain is well-folded with a stable environment around the heme C center, as its mid-point potential and rates of reduction are indistinguishable from values for the cytochrome c domain of the holo-enzyme. However, the Cu(A) site lacks copper leading to an inherent instability in this sub-domain. Expression of B. subtilis cytochrome c, as exemplified by the Cu(A)-cytochrome c protein, can be achieved in E. coli, and we conclude that the cytochrome c and Cu(A) sub-domains behave independently despite their close physical and functional association.  相似文献   

16.
《Inorganica chimica acta》1988,151(4):265-268
Titration of apo-caeruloplasmin employing substoichiometric concentrations of [Cu(I)-(thiourea)3]Cl was performed to elucidate possible sequential incorporation of copper into the different specific binding sites. The successful reconstitution was monitored by A610 absorption, EPR spectroscopy and oxidase activity. Maximum activity and final absorption at 610 nm were reached after 20 min. When both A610, indicative for type 1 copper, and oxidase activity were expressed per g-atom of copper, a sequential insertion was found. Owing to the specific data at the beginning, some type 3 copper appeared to be preferentially incorporated. After 3–4 g-atoms (including most of type 1 and type 2 copper), both absorption and oxidase activity surpassed transient maxima. Then type 3 and 4 copper were further bound to reach the known stoichiometry of six copper atoms per mole of protein.  相似文献   

17.
The genomes of several cyanobacteria show the existence of gene clusters encoding subunits I, II, and III of aa(3)-type cytochrome c oxidase. The enzyme occurs on both plasma and thylakoid membranes of these oxygenic phototrophic prokaryotes. Here we report the expression and purification of a truncated subunit II copper A (Cu(A)) domain (i.e. the electron entry and donor binding site) of cytochrome c oxidase from the cyanobacterium Synechocystis PCC 6803 in high yield. The water-soluble purple redox-active bimetallic center displays a relatively low standard reduction potential of 216 mV. Its absorption spectrum at pH 7 is similar to that of other soluble fragments from aa(3)-type oxidases, but the insensitivity of both absorbance and circular dichroism spectra to pH suggests that it is less exposed to the aqueous milieu compared with other Cu(A) domains. Oxidation of horse heart cytochrome c by the bimetallic center follows monophasic kinetics. At pH 7 and low ionic strength the bimolecular rate constant is (2.1 +/- 0.3) x 10(4) m-1 s(-1), and the rates decrease upon the increase of ionic strength. Sequence alignment and modeling of cyanobacterial Cu(A) domains show several peculiarities such as: (i) a large insertion located between the second transmembrane region and the putative hydrophobic cytochrome c docking site, (ii) the lack of acidic residues shown to be important in the interaction between cytochrome c and Paracoccus Cu(A) domain, and (iii) an extended C terminus similar to Escherichia coli ubiquinol oxidase.  相似文献   

18.
OXI mutants in Saccharomyces cerevisiae lack a functional cytochrome c oxidase. Wild type and OXI mutants were grown in the presence of radioactive delta-amino[14C]levulinic acid, a precursor of porphyrin and heme, and [3H]mevalonic acid, a precursor of the alkyl side-chain of heme a. SDS polyacrylamide gel electrophoresis of the delipidated mitochondria showed that delta-amino[14C]levulinic acid was distributed into three bands migrating in the regions of Mr 28 000, 13 500, and 10 000, while [3H]mevalonic acid was found in a single band with apparent Mr of 10 000. The immunoprecipitates obtained by incubating the solubilized mitochondria of any OXI mutant with antibodies against cytochrome c oxidase, showed, after delipidation, a high specific radioactivity due to delta-amino[14C]levulinic acid and [3H]mevalonic acid. This suggested that a prophyrin a was present in all these OXI mutants. HCl fractionation confirmed the presence of porphyrin a in the apooxidase of these mutants. Atomic absorption spectra of the immunoprecipitate of cytochrome c oxidase showed that copper was not detectable in the mutant OXI IIIa which lacked subunit 1, but was present in the mutant OXI IIIb, which exhibited a minor alteration in the electrophoretic mobility of subunit 1. In OXI I and II mutants there was a 50% reduction in the amount of copper in the immunoprecipitated cytochrome c oxidase. These observations may be interpretable as follows: (1) alterations in polypeptide biosynthesis due to the OXI mutations lead to an improper configuration of cytochrome c oxidase, so that ferrochelatase cannot transfer iron into porphyrin a; (2) subunit I is the binding site for copper, but the mutations in subunits II and III alter the binding site of one of the two copper atoms in subunit I.  相似文献   

19.
The two-subunit cytochrome c oxidase from Paracoccus denitrificans contains two heme a groups and two copper atoms. However, when the enzyme is isolated from cells grown on a commonly employed medium, its electron paramagnetic resonance (EPR) spectrum reveals not only a Cu(II) powder pattern, but also a hyperfine pattern from tightly bound Mn(II). The pure Mn(II) spectrum is observed at -40 degrees C; the pure Cu(II) spectrum can be seen with cytochrome c oxidase from P. denitrificans cells that had been grown in a Mn(II)-depleted medium. This Cu(II) spectrum is very similar to that of cytochrome c oxidase from yeast or bovine heart. Manganese is apparently not an essential component of P. denitrificans cytochrome c oxidase since it is present in substoichometric amounts relative to copper or heme a and since the manganese-free enzyme retains essentially full activity in oxidizing ferrocytochrome c. However, the manganese is not removed by EDTA and its EPR spectrum responds to the oxidation state of the oxidase. In contrast, manganese added to the yeast oxidase or to the manganese-free P. denitrificans enzyme can be removed by EDTA and does not respond to the oxidation state of the enzyme. This suggests that the manganese normally associated with P. denitrificans cytochrome c oxidase is incorporated into one or more internal sites during the biogenesis of the enzyme.  相似文献   

20.
1) Cells of Saccharomyces cerevisiae have been analysed by single and double-bean spectroscopy. Evidence is given for two components of cytochrome c oxidase in the alpha-region of their absorption spectrum. A rapidly reduceable component with a maximum at 600 nm and a slowly reduceable component with a maximum at 604 nm contribute about equal amounts to the total alpha-absorption of cytochrome c oxidase. 2) The component absorbing at 600 nm was identified as the high-potential component with a redox potential of 340 - 355mV, and the 604-nm component as the low-potential component of cytochrome c oxidase with redox potential of 180 - 190 mV. 3) Both components can be characterized by analysing the reduction kinetics in the presence of carbon monoxide. In the presence of saturating concentrations of carbon monoxide, an oxygen pulse leads to a rapid oxidation and subsequent reduction of cytochrome c oxidase, but the rapid reduction phase at 600 nm completely disappears, demonstrating its identity with cytochrome a3, which, being liganded by carbon monoxide in its reduced state, cannot react any more. The component which becomes oxidized and later reduced in the presence of carbon monoxide -- by definition cytochrome a -- has an absorption maximum at 604 nm. 4) The total extinction change at 604 nm in the presence of carbon monoxide is nearly as high as in its absence, but the reduction occurs in two phases and only the second phase, which contributes 50 - 60% to the total absorbance, corresponds in redox potential and kinetic properties to cytochrome a. Because the redox potential of the first reduction phase is very close to that of the low-potential copper atom of cytochrome c oxidase, it is concluded that the apparent increase in the extinction coefficient of cytochrome a in the presence of carbon monoxide is the result of a strong interaction between the ligand fields of cytochrome a and copper, induced by the binding of carbon monoxide to reduced cytochrome a3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号