首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cataldi  S Miscia  R Lisio  R Rana  L Cocco 《FEBS letters》1990,269(2):465-468
The effect of human recombinant DNA interferon-alpha type A on inositol lipid and diacylglycerol metabolism was investigated in Daudi lymphoma whole cells and isolated nuclei. In isolated nuclei after 90 min of interferon treatment an enhanced rate of PIP2 phosphorylation and an increase of DAG mass were observed. In whole cells, after 1 min of interferon treatment, there was a rapid and transient shift of DAG mass apparently not related to inositol lipid modifications, thus indicating the presence in nuclear and cytoplasmic compartments of inositol lipid fractions with different metabolic features in response to interferon-alpha.  相似文献   

2.
Previous studies from several independent laboratories have demonstrated the existence of an autonomous phosphoinositide (PI) cycle within the nucleus, where it is involved in both cell proliferation and differentiation. Stimulation of Swiss 3T3 cells with insulin-like growth factor-I (IGF-I) has been shown to induce a transient and rapid increase in the activity of nuclear-localized phospholipase C (PLC) beta1, which in turn leads to the production of inositol trisphosphate and diacylglycerol in the nucleus. Nuclear diacylglycerol provides the driving force for the nuclear translocation of protein kinase C (PKC) alpha. Here, we report that treatment of Swiss 3T3 cells with Go6976, a selective inhibitor of PKC alpha, caused a sustained elevation of IGF-I-stimulated nuclear PLC activity. A time course study revealed an inverse relationship between nuclear PKC activity and the activity of nuclear PLC in IGF-I-treated cells. A time-dependent association between PKC alpha and PLC beta1 in the nucleus was also observed following IGF-I treatment. Two-dimensional phosphopeptide mapping and site-directed mutagenesis demonstrated that PKC promoted phosphorylation of PLC beta1 at serine 887 in the nucleus of IGF-I-treated cells. Overexpression of either a PLC beta1 mutant in which the PKC phosphorylation site Ser(887) was replaced by alanine, or a dominant-negative PKC alpha, resulted in a sustained activation of nuclear PLC following IGF-I stimulation. These results indicate that a negative feedback regulation of PLC beta1 by PKC alpha plays a critical role in the termination of the IGF-I-dependent signal that activates the nuclear PI cycle.  相似文献   

3.
Basic fibroblast growth factor (b FGF) was found to be equally potent mitogen as compared to alpha-thrombin to reinitiate DNA synthesis in quiescent PC12 cells. Whereas thrombin was found to be an activator of phospholipase C as judged by a rapid increase in the formation of inositol triphosphate, inositol biphosphate and a massive accumulation of inositol phosphate when 20 mM LiCl was present as an inhibitor of inositol mono phosphatases, basic FGF failed to induce the breakdown of the polyphosphoinositides in quiescent PC12 cells to any appreciable levels, however, a simultaneous increase in the level of diacylglycerol was observed. b FGF also failed to stimulate protein kinase C which is believed to be activated by diacylglycerol. It is therefore concluded that bFGF receptor mediated 'signalling is not via phospholipase C activation and bFGF's early mitogenic responses and DNA synthesis are initiated independent of the inositol lipids and protein kinase C activation. Thus bFGF must have its own unique signal transducing mechanism independent of inositol pathways.  相似文献   

4.
We have proposed that two of the endogenously synthesized endometrial prostaglandins, prostaglandin F2 alpha (PGF2 alpha) and prostaglandin E1 (PGE1), play a regulatory role in growth control of the endometrium. PGF2 alpha increases DNA synthesis and PGE1 inhibits that effect. Primary cultures of rabbit endometrial cells were used here to examine the effects of the tumor-promoting, diacylglycerol mimicking, phorbol ester, 12-O-tetradecanoyl phorbol-13-acetate (TPA), on the prostaglandin control of cell proliferation. TPA treatment of these cultures results in: a decrease in control levels of proliferation and complete inhibition by TPA of PGF2 alpha stimulated DNA synthesis; a reduction in [3H]PGF2 alpha binding with short term treatment but an increase to above control binding level with long term treatment; an inhibition of the normal PGF2 alpha stimulated inositol polyphosphate synthesis; and a small increase in accumulation of PGF2 alpha in the culture media. Furthermore, in this culture system, TPA does not down regulate [3H]PGE1 binding; it does not alter the normal PGE1 stimulation of cAMP synthesis; and it has no effect on the normal endogenous PGE1 synthesis by these cultures. The above results are consistent with our previous observations that PGF2 alpha works through the intracellular messengers inositol polyphosphate/diacylglycerol whereas PGE1 works through cAMP.  相似文献   

5.
Treatment with alpha interferon is a standard therapy for patients with chronic hepatitis B virus (HBV) infections. This treatment can reduce virus load and ameliorate disease symptoms. However, in the majority of cases, alpha interferon therapy fails to resolve the chronic HBV infection. The reason alpha interferon therapy is inefficient at resolving chronic HBV infections is assumed to be because it fails to eliminate covalently closed circular (CCC) HBV DNA from the nuclei of infected hepatocytes. In an attempt to address this issue, the stability of HBV CCC DNA in response to alpha/beta interferon induction was examined in HNF1alpha-null HBV transgenic mice. Alpha/beta interferon induction by polyinosinic-polycytidylic acid [poly(I-C)] treatment efficiently eliminated encapsidated cytoplasmic HBV replication intermediates while only modestly reducing nuclear HBV CCC DNA. These observations indicate that nuclear HBV CCC DNA is more stable than cytoplasmic replication intermediates in response to alpha/beta interferon induction. Consequently it appears that for therapies to resolve chronic HBV infection efficiently, they will have to target the elimination of the most stable HBV replication intermediate, nuclear HBV CCC DNA.  相似文献   

6.
A multiparametric analysis of the effects of human recombinant interferon alpha type A on Daudi cells involving flow cytometry and in vitro analysis of alpha and beta DNA polymerase activities has been performed. Results have disclosed (within 60 min of interferon treatment) a decrease of alpha polymerase driven DNA synthesis persisting to at least 24 h, while beta polymerase was poorly affected. Moreover, after 24 h of interferon treatment, a reduction of BrdUrd incorporation per cell, assessed by flow cytometry, was observed suggesting that DNA synthesis in S phase cells is almost completely abolished. The analysis of the effect of interferon on the distribution of cell cycle phases indicated that the G1/S transition is not inhibited by the treatment. These results support the hypothesis that interferon generates a transient initiating signal which quickly reaches the nucleus and produces a rapid inhibition of alpha polymerase activity, leading finally to the slowing of cell cycle progression.  相似文献   

7.
To study the influence of nuclear oncogenes on inositol phospholipid metabolism, we examined the various parameters of inositol phospholipid metabolism in PC12 cells expressing adenovirus type 12 or adenovirus type 5 E1A. Although the inositol 1,4,5-trisphosphate content was increased only slightly, the diacylglycerol content was 2.4-fold higher in E1A-expressing PC12 cells. Furthermore, we found that the activity of phospholipase C, one of the key enzymes in inositol phospholipid metabolism, was increased at least five- to eightfold. Diacylglycerol kinase activity in the membrane fraction was 10 to 15% of that in parental PC12 cells. Overall protein kinase C activities in E1A-expressing PC12 cells were decreased, but the activity of membrane-bound protein kinase C was significantly increased. These observations clearly indicate that inositol phospholipid metabolism is stimulated in cells producing E1A and suggest that nuclear oncogene E1A has the ability to stimulate inositol phospholipid metabolism.  相似文献   

8.
The biochemical events encompassing the dephosphorylation of protein kinase C substrates by protein kinase A activators have been investigated in a neurotumor cell line, NCB-20. Treatment of [32P]orthophosphate-labeled cells with protein kinase A activators (e.g. forskolin, dibutyryl cAMP, prostaglandin E1) resulted in an inhibition of protein kinase C activity due to a failure of the protein kinase C complex to translocate into the membrane. Phospholipase C activity, as measured by the synchronous release of diacylglycerol and inositol phosphates (inositol 1,4,5-trisphosphate, inositol 1,4-bisphosphate, and inositol 1-phosphate) in response to bradykinin, was inhibited up to 50% following exposure to protein kinase A activators. At the same time, phospholipase C-specific inositol phospholipid substrates (phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate) were found to accumulate in NCB-20 cells following treatment with protein kinase A activators. This suggests that phospholipase C may be altered through protein kinase A-mediated protein phosphorylation. Second messenger generation (inositol phosphates, diacylglycerol, and Ca2+) is therefore inhibited through cyclic AMP-mediated shutdown of the inositol lipid cycle at the level of phospholipase C.  相似文献   

9.
Nuclear PI(4,5)P(2): a new place for an old signal   总被引:5,自引:0,他引:5  
  相似文献   

10.
Swiss-3T3 cells were scrape-loaded with oncogenically activated p21ras protein. 10-20 min after introducing Val12p21ras into the cell, diacylglycerol levels were increased, but levels of inositol phosphates were unaltered. However, cellular choline and phosphocholine levels were increased with a similar time course to that observed for diacylglycerol production, suggesting that ras increases phosphatidylcholine turnover but not phosphatidylinositol turnover. Down-regulation of protein kinase C (by prolonged exposure to phorbol esters prior to scrape loading) blocked the ability of ras protein to elevate the levels of diacylglycerol, choline, and phosphocholine. Oncogenic ras can, therefore, cause a substantial increase in diacylglycerol (which correlates with increased phosphatidylcholine breakdown) in a protein kinase C-dependent fashion. Val12p21ras also increased arachidonic acid release, which was also dependent on protein kinase C activation. Induction of DNA synthesis by oncogenic ras was unaffected by inhibitors of prostaglandin synthesis, indicating that conversion of the released arachidonic acid to various prostaglandins is not required for stimulation of DNA synthesis by ras. We suggest that ras rapidly activates protein kinase C, which in turn activates a number of cellular signalling systems, leading to a sustained increase in diacylglycerol levels. This elevation of diacylglycerol could sustain protein kinase C activation over the 12-15 h required for initiation of DNA synthesis.  相似文献   

11.
We succeeded in purifying the fraction containing the major glycolipids in monogalactosyl diacylglycerol, digalactosyl diacylglycerol and sulfoquinovosyl diacylglycerol (SQDG) from dried vegetables. This glycolipids fraction was an inhibitor of DNA polymerase alpha (pol alpha) in vitro and also the proliferation of human cancer cells. In this study, eight common vegetables were investigated in terms of the glycolipids fraction, the amounts of major glycolipids, mammalian DNA polymerase inhibitory activity and antiproliferative activity toward human cancer cells. Green tea possessed the largest amount of glycolipids overall. Spinach contained the largest amount of SQDG, followed by parsley, green onion, chive, sweet pepper, green tea, carrot and garlic. Spinach had the strongest inhibitory effect on pol alpha activity and human cancer cell proliferation. A significant correlation was found between SQDG content and inhibition of DNA polymerase. Therefore, the inhibition of pol alpha activity by SQDG may lead to cell growth suppression. Of the six subspecies of spinach (Spinacia oleracea) tested, "Anna" had the largest amount of SQDG, strongest inhibitory activity toward DNA polymerase and greatest effect on human cancer cell proliferation. Based on these results, the glycolipids fraction from spinach is potentially a source of food material for a novel anticancer activity.  相似文献   

12.
As a step towards the elucidation of the role played by nuclear polyphosphoinositides, we have investigated the effect of exogenous calcium free inositol (1,4,5)-trisphosphate on the in vitro phosphorylation of proteins in nuclei prepared from Swiss 3T3 cells treated with bombesin and insulin-like growth factor I. When present in combination with phosphatidylserine, inositol (1,4,5)-trisphosphate enhanced the phosphorylation of two nuclear proteins, Mr 21,000 and 31,000, as well as of exogenous histone H1, to the same extent as a combination of phosphatidylserine and diacylglycerol. Inositol (1,4,5)-trisphosphate alone had no effect. This stimulation could be abolished by the protein kinase C inhibitor sphingosine and by EGTA, while could be restored by a combination of phosphatidylserine and exogenous Ca+(+) ions. These results raise the possibility that inositol (1,4,5)-trisphosphate is capable of liberating Ca+(+) ions from a nuclear store thus stimulating protein kinase C activity.  相似文献   

13.
14.
G Uzé  G Lutfalla  I Gresser 《Cell》1990,60(2):225-234
A cDNA coding for the human interferon alpha receptor has been cloned using a gene transfer approach. This consists of transferring human DNA to mouse cells and selecting for cells sensitive to human interferon alpha. The transfected cells expressed the human interferon alpha receptor, and a 5 kb human DNA was isolated from a secondary transfectant. This DNA defects an mRNA present in human cells and was used to clone a 2.7 kb cDNA from a library constructed from human Daudi cells. The sequence of the cDNA is presented. It codes for a glycoprotein of 557 amino acids with an N-terminal hydrophobic region and a single transmembrane-spanning segment. Mouse cells expressing the cDNA become sensitive to the antiviral activity of and express binding sites for human interferon alpha, demonstrating that the cloned cDNA encodes a functional human interferon alpha receptor.  相似文献   

15.
Previous studies have demonstrated a strict extracellular Ca2+ dependence for the G0 to G1 and G1 to S transition in growth factor-treated T51B rat liver cells that is associated with increased levels of protein kinase C activity. Consequently, we have examined these cells for changes in phospholipid-derived second messengers in response to epidermal growth factor (EGF) and thrombin in order to determine which signals are generated during the initiation of the G0 to G1 transition. Thrombin is coupled to a phosphoinositide hydrolyzing phospholipase C, as we have found a rapid Ca2+-independent increase in the levels of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3), inositol 1,4-bisphosphate (Ins[1,4]P2), and inositol 4-monophosphate (Ins[4]P), as well as a concomitant, transient elevation in diacylglycerol. No changes in either intracellular or extracellular choline metabolites, or an increase in DNA synthesis, were found in response to thrombin. By contrast, treatment of T51B cells with EGF results in a slower, more prolonged extracellular Ca2+-dependent increase in both [3H]-glycerol radiolabeled diacylglycerol, and diacylglycerol mass, an increase in choline release into the extracellular medium, and eventually a substantial DNA synthesis. We were, however, unable to detect any changes in phosphatidylinositol (Ptdlns) turnover, either by accumulation of inositol phosphates or by changes in phospholipids in response to EGF. These results indicate that DNA synthesis can readily occur in the absence of stimulated Ptdlns turnover, and that Ptdlns turnover is not sufficient in itself or necessary to induce DNA synthesis and is not necessary for a Ca2+-dependent increase in diacylglycerol. Moreover, we have demonstrated that the extracellular Ca2+-dependent increase in diacylglycerol levels in response to EGF is associated with an increase in extracellular choline release, which is indicative of an activation of a phosphatidylcholine-linked phospholipase D. These results suggest that diacylglycerol sources other than Ptdlns's may be important in the extracellular Ca2+-dependent regulation of EGF-mediated cell replication. © 1995 Wiley-Liss, Inc.  相似文献   

16.
The following studies were conducted to determine whether luteinizing hormone (LH), a hormone which increases cellular levels of cyclic AMP, also provokes increases in 'second messengers' derived from inositol lipid metabolism (i.e. inositol phosphates and diacylglycerol). Rat granulosa cells isolated from mature Graafian follicles were prelabelled for 3 h with myo-[2-3H]inositol. LH provoked rapid (5 min) and sustained (up to 60 min) increases in the levels of inositol mono-, bis, and trisphosphates (IP, IP2 and IP3, respectively). Time course studies revealed that IP3 was formed more rapidly than IP2 and IP following LH treatment. The response to LH was concentration-dependent with maximal increases at LH concentrations of 1 microgram/ml. LiCl (2-40 mM) enhanced the LH-provoked accumulation of all [3H]inositol phosphates, presumably by inhibiting the action of inositol phosphate phosphatases. The effectiveness of LH, however, was dependent on the concentration of lithium employed; maximal increases in IP were observed at 10 mM-LiCl, whereas maximal increases in IP2 and IP3 were observed at 20 mM- and 40 mM-LiCl, respectively. The stimulatory effects of LH on inositol phosphate and progesterone accumulation were also compared with changes in cyclic nucleotide levels. LH rapidly increased levels of inositol phosphates, progesterone and cyclic AMP, but transiently reduced levels of cyclic GMP. These results demonstrate that LH increases both cyclic AMP and inositol trisphosphate (and presumably diacylglycerol) in rat granulosa cells. Our findings suggest that two messenger systems exist to mediate the action of LH in granulosa cells.  相似文献   

17.
Signal-induced turnover of membrane phospholipids represents a fundamental transducing mechanism that induces a signal cascade resulting in mobilization of calcium, activation of protein kinase C by diacylglycerol, release of arachidonic acid and stimulation of cyclic GMP production. In this pathway tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) may substitute for diacylglycerol. The interferonlike antiviral effect of PMA described here suggests that the inositol phospholipid-diacylglycerol-protein kinase C signal-transducing mechanism may be involved in interferon action.  相似文献   

18.
The response of rat aortic smooth muscle cells to all three isoforms of platelet-derived growth factor (PDGF) was studied. 5,000 binding sites/cell were estimated for rPDGF-AA (Kd 0.22 nM), 45,000 for rPDGF-AB and (Kd 0.4 nM), and 31,000 for rPDGF-BB (Kd 0.29 nM). rPDGF-AB and -BB stimulated effectively [3H]thymidine incorporation, inositol 1,4,5-trisphosphate release, diacylglycerol productions, [Ca2+]i increase, and pHi changes at concentration in the range from 3 to 10 ng/ml. The extent of DNA synthesis stimulated by rPDGF-AA varied considerably, and in all cases higher concentrations than 10 ng/ml were required. rPDGF-AA did not stimulate inositol-1,4,5-trisphosphate release, [Ca2+]i increase or pHi changes but induced the production of diacylglycerol, although with a different kinetic compared with that observed with rPDGF-AB or -BB. Apparently rPDGF-AA acts via a different mechanism, generating diacylglycerol without the release of inositol-1,4,5-trisphosphate.  相似文献   

19.
U46619双向调节系膜细胞DNA合成的研究   总被引:1,自引:0,他引:1  
Mene用血清或佛波醇肉豆寇乙酸(PMA)预失活化系膜细胞的PKC,可抑制U46619所致的IP合成及细胞内Ca~(2 )的升高,提示PKC预先活化后,可对再次活化PLC-PKC的物质起负反馈抑制作用。血清中含有血液凝固时血小板释放的血小板源性生长因子(PDGF),可活化PLC及PKC,可能对U46619的作用起负反馈抑制,使U46619促增殖作用丧失。第三,TXA_2可能直接或间接刺激前列腺素(PG)E_2或PGI_2的合成,而后两者有抑制细胞增殖的作用。不论何种机制参与,U46619这种抑制作用在病理上可能有积极意义:在正常状态下,体内肾小球系膜细胞为静息状态,肾小球合成的PG及TX极少,当肾小球产生炎症时,肾小球白细胞及血小板浸润增多,合成的PG、TX及PDGF增多,这时TX的升高可能有抑制PDGF所致细胞增殖的作用。 摘要 本实验用[~3H]TdR掺入法测定TXA_2类似物U46619对大鼠系膜细胞DNA合成的调节作用,测定系膜细胞合成的DAG及1,4,5-IP_3量,用PKC抑制剂Calphostin C预处理系膜细胞,观察其对U46619促增殖作用的影响。结果表明,U46619促进生长停滞的系膜细胞的DNA合成及IP_3的生成。本文首次证实U46619也促进DAG的生成并发现PKC抑制剂可抑制U46619的促增殖作用,提示U46619使生长停滞的系膜细胞的PLC活化,促进IP及DAG生成,进而激活PKC,促进系膜细胞DNA合成  相似文献   

20.
We studied mitogenic signal transduction in normal and oncogene-transformed 32D cells, a murine hematopoietic cell line that is normally dependent on interleukin-3 (IL3) for proliferation and survival. The formation of second messengers was measured in normal cells stimulated with IL3, and in cells transfected with foreign growth factor receptor genes and stimulated with appropriate growth factors. We also measured the steady-state level of second messengers in 32D cells transformed by erbB, abl, and src oncogenes which abrogate growth factor requirement. We found that IL3 stimulated the formation of diacylglycerol independently of inositol lipid turnover, but concomitantly with increased turnover of phosphatidylcholine. Epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) stimulated the 'classical' turnover of inositol lipids with formation of diacylglycerol and calcium-mobilizing inositol phosphates. Colony stimulating factor-1 triggered inositol lipid turnover, although to a much lower extent than EGF and PDGF. Transformed cells showed elevated levels of diacylglycerol together with increased turnover of phosphoinositides and phosphatidylcholine. Taken together these results indicate that different growth factors and oncoproteins associate with multiple signalling pathways in 32D cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号