首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mass spectrometric determinations of O2 affinities by the rumen fungus Neocallimastix patriciarum indicated a stable respiration under liquid phase O2 concentrations up to 10 M, the apparent K m for O2 under these conditions was 4.0 M. Exposure to O2 concentrations in excess of 10 M resulted in rapid inactivation of the observed respiration. Calculated H2 evolution rates for the organism are 8.1 nmol min-1 per mg of protein. Exposure to liquid-phase O2 concentrations in excess of 1.4 M caused 50% inhibition of H2 production. That superoxide and peroxide are amongst the products of respiration was shown by the use of ESR spectroscopy with the spin trapping agent 5,5-dimethyl-l-pyrroline-N-oxide. An active superoxide dismutase was present, but catalase could not be detected.Abbreviations ESR electron spin resonance - DMPO 5,5-dimethyl-l-pyrroline-N-oxide - DETAPAC diethylene-triamine pentaacetic acid  相似文献   

2.
A xylanase gene (xynC) isolated from the anaerobic ruminal fungus Neocallimastix patriciarum was characterized. The gene consists of an N-terminal catalytic domain that exhibited homology to family 11 of glycosyl hydrolases, a C-terminal cellulose binding domain (CBD) and a putative dockerin domain in between. Each domain was linked by a short linker domain rich in proline and alanine. Deletion analysis demonstrated that the CBD was essential for optimal xylanase activity of the enzyme, while the putative dockerin domain may not be required for enzyme function.  相似文献   

3.
SUMMARY: Sphingolipids are a structurally diverse group of molecules based on long-chain sphingoid bases that are found in animal, fungal and plant cells. In contrast to the situation in animals and yeast, much less is known about the spectrum of sphingolipid species in plants and the roles they play in mediating cellular processes. Here, we report the cloning and characterization of a plant ceramidase from rice (Oryza sativa spp. Japonica cv. Nipponbare). Sequence analysis suggests that the rice ceramidase (OsCDase) is similar to mammalian neutral ceramidases. We demonstrate that OsCDase is a bona fide ceramidase by heterologous expression in the yeast double knockout mutant Deltaypc1Deltaydc1 that lacks the yeast ceramidases YPC1p and YDC1p. Biochemical characterization of OsCDase showed that it exhibited classical Michaelis-Menten kinetics, with optimum activity between pH 5.7 and 6.0. OsCDase activity was enhanced in the presence of Ca(2+), Mg(2+), Mn(2+) and Zn(2+), but inhibited in the presence of Fe(2+). OsCDase appears to use ceramide instead of phytoceramide as a substrate. Subcellular localization showed that OsCDase is localized to the endoplasmic reticulum and Golgi, suggesting that these organelles are sites of ceramide metabolism in plants.  相似文献   

4.
A thermally stable and alkalophilic xylanase, XynCDBFV, from Neocallimastix patriciarum was overexpressed in Escherichia coli as a recombinant protein fused to the N-terminus of oleosin, a unique structural protein of seed oil bodies. As a result of the reconstitution of the artificial oil bodies (AOBs), the immobilization of active xylanase was accomplished. Response surface methodology (RSM) was employed for the optimization of the immobilized xylanase activity. The central composite design (CCD) and regression analysis methods were effective for determination of optimized temperature and pH conditions for the AOB-immobilized XynCDBFV. The optimal condition for the highest immobilized xylanase activity (3.93IU/mg of total protein) was observed at 59 degrees C and pH 6.0. Further, AOB-immobilized XynCDBFV retained 50% of its maximal activity after 120min at 60 degrees C, and it could be easily and simply recovered from the surface of the solution by brief centrifugation, and could be reused eight times while retaining more than 60% of its activity. These results proved it is a simple and effective method for direct immobilization of xylanases.  相似文献   

5.
The catalytic domain of a xylanase from the anaerobic fungus Neocallimastix patriciarum was made more alkalophilic through directed evolution using error-prone PCR. Transformants expressing the alkalophilic variant xylanases produced larger clear zones when overlaid with high pH, xylan-containing agar. Eight amino acid substitutions were identified in six selected mutant xylanases. Whereas the wild-type xylanase exhibited no activity at pH 8.5, the relative and specific activities of the six mutants were higher at pH 8.5 than at pH 6.0. Seven of the eight amino acid substitutions were assembled in one enzyme (xyn-CDBFV) by site-directed mutagenesis. Some or all of the seven mutations exerted positive and possibly synergistic effects on the alkalophilicity of the enzyme. The resulting composite mutant xylanase retained a greater proportion of its activity than did the wild type at pH above 7.0, maintaining 25% of its activity at pH 9.0, and its retention of activity at acid pH was no lower than that of the wild type. The composite xylanase (xyn-CDBFV) had a relatively high specific activity of 10128 micromol glucose x min(-1) x (mg protein)(-1) at pH 6.0. It was more thermostable at 60 degrees C and alkaline tolerant at pH 10.0 than the wild-type xylanase. These properties suggest that the composite mutant xylanase is a promising and suitable candidate for paper pulp bio-bleaching.  相似文献   

6.
A rapid extraction and purification procedure is described for the preparation of toxic peptides from freshwater blooms and laboratory isolates of Microcystis aeruginosa . Extraction with methanol/butanol, followed by C18 cartridge concentration; gel filtration and high performance liquid chromatography yields discrete toxin peaks. Elution profiles for the laboratory isolates and bloom extracts are compared and the applicability of the method for detecting cyanobacterial toxins in natural waters is discussed.  相似文献   

7.
L-Aspartate 4-decarboxylase (Asd) is a major enzyme used in the industrial production of L-alanine. Its gene was cloned from Pseudomonas sp. ATCC 19121 and characterized in the present study. The 1,593-bp asd encodes a protein with a molecular mass of 59,243 Da. The Asd from this Pseudomonas strain was considerably homologous to other Asds and aminotransferases, and has evolved independently of these enzymes from gram-positive microbes. Productivity rate of the C-terminal His-tagged fusion Asd was at 33 mg/l of Escherichia coli transformant culture. The kinetic parameters K (m) and V (max) of the fusion protein were 11.50 mM and 0.11 mM/min, respectively. Gel filtration analysis demonstrated that Asd is a dodecamer at pH 5.0 while 4.4 % of the recombinant protein dissociated into dimer when the pH was increased to 7.0. Asd exhibited its maximum activity at pH 5.0 and specific activity of 280 U/mg, and remained stable over a broad range of pH. The optimum temperature for Asd reaction was 45 degrees C, and 92 % of the activity remained when the enzyme was incubated at 40 degrees C for 40 min. This enzyme did not have any preferred divalent cation for catalysis. The recombinant Asd also exhibited aminotransferase activity when D,L-Asp, L-Glu, L-Gln, and L-Ala were utilized as substrates. However, the decarboxylation activity of L-aspartate was 2,477 times higher than its aminotransferase activity. The present study is the first investigation on the important biochemical properties of the purified recombinant Asd.  相似文献   

8.
UDP-Glc:protein transglucosylase (UPTG) (EC 2.4.1.112) is an autocatalytic glycosyl-transferase previously postulated as a protein that primes starch biosynthesis. Polyclonal antibodies raised against UPTG purified from potato (Solanum tuberosum L.) tubers were used to screen a potato swelling stolon tip cDNA expression library. The isolation, cloning and sequencing of two cDNAs corresponding to UPTG are described. Recombinant UPTG was labelled after incubation with UDP-[14C]-Glc and Mn2+, indicating that it was enzymatically active. It was determined that purified as well as recombinant UPTG can be reversibly glycosylated by UDP-Glc, UDP-Xyl or UDP-Gal. RNA hybridization studies and western blot analysis indicate that UPTG mRNA and protein are expressed in all potato tissues. Databank searches revealed a high degree of identity between UPTG and several plant sequences that encode for proteins with apparent localization at the cytoplasmic face of the Golgi apparatus and at plasmodesmata. The biochemical properties of UPTG and the apparent lack of a signal peptide that could allow its entrance into plastids argue against the postulated role of UPTG in starch synthesis and point towards a possible role of the protein in the synthesis of cell wall polysaccharides.  相似文献   

9.
The ability of the ruminal anaerobic phycomycete Neocallimastix patriciarum to digest model lignin compounds and lignified structures in plant material was studied in batch culture. The fungus did not degrade or transform model lignin compounds that were representative of the predominant intermonomer linkages in lignin, nor did it solubilize acid detergent lignin that had been isolated from spear grass. In a stem fraction of sorghum, 33.6% of lignin was apparently solubilized by the fungus. Solubilization of ester- and either-linked phenolics accounted for 9.2% of the lignin released. The amounts of free phenolic acids detected in culture fluid were equivalent to the apparent loss of ester-linked phenolics from the sorghum substrate. However, the fungus was unable to cleave the ether bond in hydroxycinnamic acid bridges that cross-link lignin and polysaccharide. It is suggested that the majority of the solubilized lignin fraction was a lignin carbohydrate complex containing ether-linked hydroxycinnamic acids. The lignin carbohydrate complex was probably solubilized through dissolution of xylan in the lignin-xylan matrix rather than by lignin depolymerization.  相似文献   

10.
11.
Canola seed oil-bodies were investigated as a production vehicle and immobilization matrix for xylanases. A recombinant xynC gene from Neocallimastix patriciarum encoding a xylanase (XynC) was fused to an oleosin coding sequence suitable for targeting the xylanase to the oil-body membrane. This fusion gene was introduced into Brassica napus using Agrobacterium-mediated transformation. Transgenic Canola plants were obtained expressing xylanase which was targeted to the oil-bodies of seeds as shown by analysis with XynC-specific antibodies. Oil-bodies extracted from transgenic seeds exhibited xylanase activity, indicating the immobilization of XynC on the surface of oil bodies and the functioning of the xylanase as a fusion protein. The immobilized XynC retained its optimal temperature, Km value and specificity. However, it exhibited reduced sensitivity to pH. Furthermore, it was shown that the enzyme immobilized on oil-bodies could be recycled by flotation several times without loss of activity.  相似文献   

12.
A cDNA encoding a chymotrypsinogen-like protein in midguts of the lesser grain borer, Rhyzopertha dominica (F.) (Coleoptera: Bostrichidae) was cloned and sequenced. The 901 bp cDNA contains an 816-nucleotide open reading frame encoding 272-amino acids. The predicted molecular mass and pI of the mature enzyme are 23.7 kDa and 4.64, respectively. The encoded protein includes amino acid sequence motifs that are conserved with 5 homologous chymotrypsinogen proteins from other insects. Features of the putative chymotrypsin-like protein from R. dominica include the serine proteinase active site (His(90), Asp(133), Ser(226)), conserved cysteine residues for disulfide bridges, the residues (Gly(220), Gly(243), Asp(252)) that determine chymotrypsin specificity, and both zymogen activation and signal peptides. A TPCK-sensitive caseinolytic protein (P6) with an estimated molecular mass of 24 kDa is present in midgut extracts of R. dominica and can be resolved by electrophoresis on 4-16% polyacrylamide gels. The molecular mass of this caseinolytic enzyme is similar to that of the chymotrypsin deduced from cDNA. Midgut extracts of R. dominica readily hydrolyzed azocasein and N-succinyl-alanine-alanine-proline-phenylalanine-p- nitroanilide (SAAPFpNA), a chymotrypsin-specific substrate. Properties of the enzymes responsible for these activities were partially characterized with respect to distribution in the gut, optimum pH, and sensitivity toward selected proteinase inhibitors. Optimal activity against both azocasein and SAAPFpNA occurs in a broad pH range from about 7 to 10. Both azocasein and SAAPFpNA activities, located primarily in the anterior midgut region, are inhibited by aprotinin, phenylmethyl sulphonylfluoride (PMSF), and soybean trypsin inhibitor (STI). TPCK (N-alpha-tosyl-L-phenylalanine chloromethyl ketone) and chymostatin inhibited more than 60% of SAAPFpNA but only about 10-20% of azocasein activity. These results provide additional evidence for the presence of serine proteinases, including chymotrypsin, in midguts of R. dominica. Arch. Insect Biochem. Physiol. 43:173-184, 2000.Published 2000 Wiley-Liss, Inc.  相似文献   

13.
Peroxiredoxins (Prxs) are a ubiquitous family of peroxidases widely distributed among prokaryotes and eukaryotes. Here, we report on the cloning and functional characterization of a cDNA designated PcPrx-1, encoding peroxiredoxin from the white-rot fungus Phanerochaete chrysosporium. The full-length PcPrx-1 cDNA (932 bp) contains an open reading frame of 200 amino acid residues with a molecular mass of 22.1 kDa. The deduced primary structure of PcPrx-1 polypeptide shows a high level of sequence identity to other recently identified 2-cys peroxiredoxins. The recombinant PcPrx-1 protein was expressed as a histidine fusion protein in Escherichia coli and purified with a Ni2+-column. The purified protein was shown to have a protective effect against plasmid DNA cleavage by reactive oxygen species. The PcPrx-1 protein displays the ability to remove H2O2 in a ferrithiocyanate system. The results of this study suggest that PcPrx-1 may play a protective role against oxidative stress in P. chrysosporium.  相似文献   

14.
Bacillus stearothermophilus SA0301 produces an extracellular oligo-1,6-glucosidase (bsO16G) that also hydrolyzes p-nitrophenyl alpha-D-glucoside (Tonozuka et al., J. Appl. Glycosci., 45, 397-400 (1998)). We cloned a gene for an enzyme hydrolyzing p-nitrophenyl alpha-D-glucoside, which was different from the one mentioned above, from B. stearothermophilus SA0301. The k(0)/K(m) values of bsO16G for isomaltotriose and isomaltose were 13.2 and 1.39 s(-1).mM(-1) respectively, while the newly cloned enzyme did not hydrolyze isomaltotriose, and the k(0)/K(m) value for isomaltose was 0.81 s(-1).mM(-1). The primary structure of the cloned enzyme more closely resembled those of trehalose-6-phosphate hydrolases than those of oligo-1,6-glucosidases, and the cloned enzyme hydrolyzed trehalose 6-phosphate. An open reading frame encoding a protein homologous to the trehalose-specific IIBC component of the phopshotransferase system was also found upstream of the gene for this enzyme.  相似文献   

15.
16.
【目的】克隆药用真菌猪苓MAPK基因并进行生物信息学分析及表达模式研究。【方法】利用5′-RACE-PCR技术从猪苓菌丝中克隆得到MAPK基因全长,利用生物信息学软件推测蛋白的理化性质、结构域;DNA Star对氨基酸进行多序列比对;用MEGA 5.0做进化关系分析;借助实时定量PCR检测基因表达模式。【结果】猪苓MAPK基因的全长cDNA为1 293 bp,其中编码区占1 161 bp,共编码386个氨基酸,推测分子量为43.872 kD,理论等电点为6.68。猪苓的MAPK有MAPK中ERK1/2类型的保守区。系统进化树结果显示猪苓MAPK蛋白属于担子菌类群。实时荧光定量PCR分析结果表明猪苓菌核形成初期,菌核中的MAPK表达量显著高于菌丝组织,随着菌核的快速生长而减少。【结论】猪苓MAPK基因PuMAPK的分子特征为进一步研究其在猪苓菌丝形成菌核过程中的作用奠定基础。  相似文献   

17.
Eucaryotes contain a class of enzymes called flavin-dependent monooxygenases (FMOs). Unlike mammals, yeast have only a single isoform-yFMO. Deletion mutants suggested that yFMO may play a role in folding proteins which contain disulfide bonds. Recently we detected two nucleotide errors in the GenBank sequences attributed to the yFMO gene. This previously led us to express and characterize a 373-residue catalytically active protein instead of the correct 432-residue enzyme. Here we report the sequencing, expression, and enzyme characterization of the full-length form of yFMO. Comparison of the two forms of yFMO showed similar pH profiles and K(m), K(cat), and V(max) values using glutathione as a substrate. These results indicate that the full-length yeast FMO has biochemical and catalytic properties similar to those of the truncated protein. Therefore, it is likely that the hypotheses concerning the enzyme's function proposed earlier are still valid.  相似文献   

18.
Ko JH  Kim BG  Hur HG  Lim Y  Ahn JH 《Plant cell reports》2006,25(7):741-746
Secondary plant metabolites undergo several modification reactions, including glycosylation. Glycosylation, which is mediated by UDP-glycosyltransferase (UGT), plays a role in the storage of secondary metabolites and in defending plants against stress. In this study, we cloned one of the glycosyltransferases from rice, RUGT-5 resulting in 40–42% sequence homology with UGTs from other plants. RUGT-5 was functionally expressed as a glutathione S-transferase fusion protein in Escherichia coli and was then purified. Eight different flavonoids were used as tentative substrates. HPLC profiling of reaction products displayed at least two peaks. Glycosylation positions were located at the hydroxyl groups at C-3, C-7 or C-4′ flavonoid positions. The most efficient substrate was kaempferol, followed by apigenin, genistein and luteolin, in that order. According to in vitro results and the composition of rice flavonoids the in vivo substrate of RUGT-5 was predicted to be kaempferol or apigenin. To our knowledge, this is the first time that the function of a rice UGT has been characterized.  相似文献   

19.
20.
We have recently reported the molecular cloning of a gene, gspK, in Vibrio cholerae that encodes a specific glucosamine kinase. We describe here the identification of bglA, a gene contiguous to gspK in a presumptive large chitin catabolic operon. BglA was molecularly cloned into Escherichia coli, and the protein BglA was overexpressed and purified to apparent homogeneity. BglA is 65 kDa (574 amino acids) with an N-terminal amino acid sequence predicted by the gene sequence, suggesting that the enzyme is cytoplasmic. The purified enzyme exhibited optimal activity with p-nitrophenyl beta-glucoside, cellobiose, and higher oligosaccharides of cellulose. No other glucosides or glycosides tested were hydrolyzed, including Glc-Glc disaccharides where the linkage is beta 1-->2, beta 1-->3, and beta 1-->6, respectively. The predicted BglA sequence bears little similarity to other proteins in the data banks. The Henrissat algorithm places BglA sequence in Family 9 of the glycosidases, suggesting it is an endoglucanase. However, the results summarized above suggested that BglA is an exoenzyme yielding Glc at each cleavage step. To resolve this apparent discrepancy, detailed kinetic studies were conducted with cellotetraose. Only exoglucanase activity was detected. The function of this enzyme in V. cholerae remains to be determined, especially because our strain of this organism does not utilize cellobiose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号