首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper evaluates the effects of testosterone (0.5 mg/kg subcutaneously (s.c.) for 8 days) on oxidative stress and cell damage induced by 3-nitropropionic acid (20 mg/kg intraperitoneally (i.p.) for 4 days) in ovariectomized rats. Gonadectomy triggered oxidative damage and cell loss, evaluated by the detection of caspase-3, whereas 3-nitropropionic acid increased the levels of oxidative stress induced by ovariectomy and prompted cell damage characterized by enhanced levels of lactate dehydrogenase. These changes were blocked by testosterone administration. Our results support the following conclusions: i) ovariectomy triggers oxidative and cell damage via caspase-3 in the striatum; ii) 3-nitropropionic acid exacerbates oxidative stress induced by ovariectomy and leads to cell damage characterized by increased levels of lactate dehydrogenase; iii) testosterone administration decreases oxidative stress and cell damage. Additionally, these data support the hypothesis that testosterone might play an important role in the onset and development of neurodegenerative diseases.  相似文献   

2.
An investigation was conducted on the effect of transcranial magnetic field stimulation (TMS) on the free radical production and neuronal cell loss produced by 3-nitropropionic acid in rats. The effects of 3-nitropropionic acid were evaluated by examining the following changes in: the quantity of hydroperoxides and total radical-trapping antioxidant potential (TRAP), lipid peroxidation products, protein carbonyl groups, reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px), catalase and succinate dehydrogenase (SDH) activities; total nitrite and cell death [morphological changes, quantification of neuronal loss and lactate dehydrogenase (LDH) levels]. Our results reveal that 3-nitropropionic acid induces oxidative and nitrosative stress in the striatum, prompts cell loss and also shows that TMS prevents the harmful effects induced by the acid. In conclusion, the results show the ability of TMS to modify neuronal response to 3-nitropropionic acid.  相似文献   

3.
This study evaluated and compared the potential protective effects of probucol and succinobucol, two lipid-lowering compounds with anti-inflammatory and antioxidant properties, on oxidative stress and mitochondrial dysfunction induced by 3-nitropropionic acid (3-NP, a succinate dehydrogenase (SDH) inhibitor largely used as model of Huntington's disease) in rat brain mitochondria-enriched synaptosomes. 3-NP caused significant inhibition of mitochondrial complex II activity, induced mitochondrial dysfunction and oxidative stress. Probucol and succinobucol prevented oxidative stress, but only succinobucol was able to prevent the mitochondrial dysfunction induced by 3-NP. Succinobucol, which did not recover complex II inhibition, was able to protect against 3-NP-induced decreased of MTT reduction, indicating that SDH is not the only enzyme responsible for MTT reduction. The present findings suggest that succinobucol might be a novel strategy to slow or halt oxidative events in neurodegenerative conditions.  相似文献   

4.
Huntington’s disease (HD) is an autosomal dominantly inherited neurodegenerative disease characterized by symptoms attributable to the death of striatal and cortical neurons. The molecular mechanisms mediating neuronal death in HD involve oxidative stress and mitochondrial dysfunction. Administration of 3-nitropropionic acid (3-NP), an irreversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, in rodents has been proposed as a useful experimental model of HD. This study evaluated the effects of probucol, a lipid-lowering agent with anti-inflammatory and antioxidant properties, on the biochemical parameters related to oxidative stress, as well as on the behavioral parameters related to motor function in an in vivo HD model based on 3-NP intoxication in rats. Animals were treated with 3.5 mg/kg of probucol in drinking water daily for 2 months and, subsequently, received 3-NP (25 mg/kg i.p.) once a day for 6 days. At the end of the treatments, 3-NP-treated animals showed a significant decrease in body weight, which corresponded with impairment on motor ability, inhibition of mitochondrial complex II activity and oxidative stress in the striatum. Probucol, which did not rescue complex II inhibition, protected against behavioral and striatal biochemical changes induced by 3-NP, attenuating 3-NP-induced motor impairments and striatal oxidative stress. Importantly, probucol was able to increase activity of glutathione peroxidase (GPx), an enzyme important in mediating the detoxification of peroxides in the central nervous system. The major finding of this study was that probucol protected against 3-NP-induced behavioral and striatal biochemical changes without affecting 3-NP-induced mitochondrial complex II inhibition, indicating that long-term probucol treatment resulted in an increased resistance against neurotoxic events (i.e., increased oxidative damage) secondary to mitochondrial dysfunction. These data appeared to be of great relevance when extrapolated to human neurodegenerative processes involving mitochondrial dysfunction and indicates that GPx is an important molecular target involved in the beneficial effects of probucol.  相似文献   

5.
6.
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic involuntary movements, decline in cognitive functions, behavioral disturbances, and progressive neuronal death affecting primarily the striatum. The fatal nature of HD makes it important to search for new effective methods of its treatment, which requires the development of experimental models of the disease. These models can be created using 3-nitropropionic acid (3-NPA), which is a neurotoxin causing typical changes in motor skills and memory impairment in animals due to induction of oxidative stress, impaired glutathione defense, and destruction of striatal cells. We modeled HD in rats by chronic daily intraperitoneal administration of 3-NPA for 17 days. Systemic administration of a low dose of 3-NPA (10 mg/kg) induced hyperactivity of animals in the open field test (including movement redundancy as a hyperkinesia analogue) and had no effect on the behavior of the animals in the X-maze test. On the contrary, rats administered with a toxic dose of 3-NPA (20 mg/kg) exhibited a significant decrease in their motor activity and a cognitive decline in behavioral tests. A histopathological analysis revealed damage and loss of neurons and a decrease in expression of dopaminergic markers (tyrosine hydroxylase and plasma membrane dopamine transporter) in the striatum. The gliotoxic effect of 3-NPA was also found in the striatum, which was confirmed by immunohistochemical staining for astrocytic proteins: GFAP, glutamine synthetase, and aquaporin-4. This HD model may be helpful for testing new experimental therapies at different stages of HD-like neurodegeneration, including therapies based on cell neurotransplantation.  相似文献   

7.
Behl C  Moosmann B 《Biological chemistry》2002,383(3-4):521-536
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.  相似文献   

8.
Increasing evidence implicates caspase-1-mediated cell death as a major mechanism of neuronal death in neurodegenerative diseases. In the present study we investigated the role of caspase-1 in neurotoxic experimental animal models of Huntington's disease (HD) by examining whether transgenic mice expressing a caspase-1 dominant-negative mutant are resistant to malonate and 3-nitropropionic acid (3-NP) neurotoxicity. Intrastriatal injection of malonate resulted in significantly smaller striatal lesions in mutant caspase-1 mice than those observed in littermate control mice. Caspase-1 was significantly activated following malonate intrastriatal administration in control mice but significantly attenuated in mutant caspase-1 mice. Systemic 3-NP treatment induced selective striatal lesions that were significantly smaller within mutant caspase-1 mice than in littermate control mice. These results provide further evidence of a functional role for caspase-1 in both malonate- and 3-NP-mediated neurotoxin models of HD.  相似文献   

9.
Serious neurodegenerative disorders are increasingly prevalent in our society and excessive oxidative stress may be a key mediator of neuronal cell death in many of these conditions. A variety of metals, such as manganese and zinc, are essential trace elements but can reach localized toxic concentrations through various disease processes or environmental exposures and have been implicated as having a role in neurodegeneration. Both manganese and zinc exist as bivalent cations and are essential cofactors/activators for numerous enzymes. Evidence suggests one action of these metals, when concentrated beyond physiological levels, may be to inhibit cellular energy production, ultimately leading to increased radical formation. Our studies were undertaken to directly investigate the toxic effects of manganese and zinc in an immortalized neuronal-like cell line (SK-N-SH) by testing interactions with the antioxidant, 17beta-estradiol, and the neurotoxin, ethanol. Employing undifferentiated SK-N-SH cells, we found that these metals caused biphasic effects, enhancing cell proliferation at low doses and inducing cell death at higher doses. Zinc was both more efficacious and more potent than manganese in enhancing growth and in causing cell death. 17beta-Estradiol and ethanol enhanced the proliferative actions of zinc and manganese across a wide concentration range. Furthermore, co-treatment with either 17beta-estradiol or ethanol afforded protection against manganese-, but not zinc-induced toxicity. Finally, combined administration of 17beta-estradiol and ethanol to SK-N-SH cells resulted in both a loss of growth enhancement and protective properties that were observed when these substances were administered individually. We also noted that the toxic effects occurred more rapidly from zinc than manganese exposure. Taken together, these data suggest that oxidative stress likely has a role in cell death resulting from toxic exposure to either zinc or manganese, but there is a difference in the precise mechanism of their effects.  相似文献   

10.
In neurodegenerative diseases, progressive oxidative stress is a major event that precedes neuronal death. Oxidative stress is characterized by an imbalance between oxidants and antioxidants. This imbalance induced oxidative molecular and cell damage, reducing cellular viability. 3-Nitropropionic acid (3NP) causes oxidative stress and other molecular and cellular changes similar to those observed in neurons of patients with Huntington’s disease. Since carvedilol and melatonin act as free-radical scavengers, this study examined the effect of carvedilol (10?5 M) and melatonin (10?5 M) on oxidative and cell damage induced by 3NP in N1E-115 neuroblastoma cells. Carvedilol and melatonin prevented the increases in lipid peroxidation and total LDH activity, as well as the depletion of reduced glutathione (GSH) and the reduction of antioxidative enzymes activities in N1E-115 cells incubated with 100 mM 3NP. All these carvedilol and melatonin effects were more intense when the drugs were added before rather than after inducing the damage by 3NP. These results also provided evidence supporting the hypothesis that carvedilol and melatonin can be useful for treating neurodegenerative diseases, such as Huntington’s disease.  相似文献   

11.
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.  相似文献   

12.
The effects of low and high doses of 17 beta-estradiol and progesterone for 2 weeks on intestinal digestive and absorptive functions have been investigated in ovariectomized rats. The uptake of glucose was significantly enhanced following ovariectomy and administration of hormones restored the level of glucose uptake to that observed in sham-operated animals. Neither, the uptake of L-leucine nor calcium was affected after ovariectomy and treatment with the hormones. The activity of alkaline phosphatase (AP) of ileum was significantly elevated with the low and high doses of 17 beta-estradiol but in jejunum only at high doses. Progesterone alone did not alter AP activity but the combination of this hormone and 17 beta-estradiol significantly enhanced the jejunal and ileal AP activities. It seems that activity of AP is mainly under the control of 17 beta-estradiol. The activity of ileal disaccharidases and leucine aminopeptidase were enhanced at high doses of 17 beta-estradiol alone or in combination with progesterone whereas in the jejunum only AP activity was increased significantly. The present study indicates that 17 beta-estradiol plays an important role in regulating the activities of intestinal digestive enzymes and it is the ileal enzymes which are more prone to its action.  相似文献   

13.
F Drago  C Montoneri  C Varga  F Làszlò 《Life sciences》1999,64(25):2341-2350
Since the sexual dimorphism of gastroduodenal ulcers is well known and might possibly relate to the actions of sex hormones, we studied the role of the female sex steroids, progesterone and 17beta-estradiol in cysteamine-induced mucosal ulcers in female Wistar rats (200-220 g). Administration of cysteamine (400 mg/kg, s.c.) provoked macroscopic gastroduodenal mucosa injury as assessed planimetrically, an increase in microvascular permeability in the stomach and the duodenum as assessed by extravasation of radiolabelled albumin, and decreased gastroduodenal mucus levels as assessed by the Alcian blue technique. Ovariectomy (2 weeks before cysteamine) decreased plasma 17beta-estradiol level as assessed by radioimmunoassay, gastroduodenal macroscopic injury and albumin extravasation, and increased mucus levels following cysteamine challenge. Administration of progesterone (10-50 mg/kg/week, s.c.) attenuated in a dose-dependent manner cysteamine-induced gastroduodenal mucosa injury and microvascular leakage, while it increased mucus levels in the stomach and the duodenum. In contrast, administration of 17beta-estradiol (1-5 mg/kg/week, s.c.) dose-dependently augmented gastric and duodenal macroscopic mucosa lesions and microvascular injury provoked by cysteamine, and caused a further reduction in gastroduodenal mucus levels observed after cysteamine administration. In different experiments, ovariectomy decreased indomethacin-induced gastroduodenal injury. The injection of 17beta-estradiol (1-5 mg/kg/week) did not affect gastroduodenal damage, while treatment with progesterone (10-50 mg/kg/week) protected against indomethacin-provoked mucosa ulcers. It is concluded that female sex steroids play a role in drug-induced gastroduodenal ulcers by modulating microvascular permeability and mucus secretion.  相似文献   

14.
The study was designed to investigate the beneficial effect of quercetin supplementation in 3-nitropropionic acid (3-NP) induced model of Huntington's disease (HD). HD was induced in rats by administering sub-chronic dose of 3-NP, intraperitoneally, twice daily for 17 days. Quercetin was supplemented at a dose of 25 mg/kg body weight by oral gavage for 21 days. At the end of treatment, mitochondrial bioenergetics, mitochondrial swelling, oxidative stress, neurobehavioral deficits and histopathological changes were analyzed. Quercetin supplementation was able to reverse 3-NP induced inhibition of respiratory chain complexes, restore ATP levels, attenuate mitochondrial oxidative stress in terms of lipid peroxidation and prevent mitochondrial swelling. Quercetin administration also restored the activities of superoxide dismutase and catalase along with thiol content in 3-NP treated animals. Beneficial effect of quercetin administration was observed on 3-NP induced motor deficits analyzed by narrow beam walk and footprint analysis. Histopathological analysis of 3-NP treated rats revealed pyknotic nuclei and astrogliosis in striatum, which were reduced or absent in quercetin supplemented animals. Altogether, our results show that quercetin supplementation to 3-NP induced HD animals ameliorated mitochondrial dysfunctions, oxidative stress and neurobehavioral deficits in rats showing potential of this flavonoid in maintaining mitochondrial functions, suggesting a putative role of quercetin in HD management.  相似文献   

15.
The aim of this study was to evaluate the potential influence of endogenous ovarian hormones on cardiac oxidative stress in renovascular hypertension. Female Wistar rats (N = 10 per group) were divided among 4 groups: (i) normotensive control; (ii) hypertensive control; (iii) normotensive ovariectomized; and (iv) hypertensive ovariectomized rats. To induce hypertension, 2-kidney 1-clip (2K1C) Goldblatt's method was followed. Blood pressure (BP) was enhanced (25%) in 2K1C and it was not further altered in hypertensive ovariectomized animals. Lipid peroxidation (measured by thiobarbituric acid reactive substances; TBARS) increased in heart homogenates after ovariectomy (253%) and was additionally augmented when associated with hypertension (by 28%). Superoxide dismutase and catalase activities were similar in both hypertensive groups. Hypertension enhanced glutathione peroxidase activity (75%), but the association with ovariectomy prevented this change. Total radical trapping antioxidant potential (TRAP) decreased in hypertensive rats (34%) and was recovered when associated with ovariectomy. However, this adaptation seems not to be sufficient to avoid the increased oxidative damage in ovariectomized hypertensive animals. These results suggest a protective role for physiological ovarian hormones in the cardiac oxidative stress induced by 2K1C hypertension.  相似文献   

16.
Advanced glycation endproducts (AGEs) are elevated in aging and neurodegenerative diseases such as Alzheimer??s disease (AD), and they can stimulate the generation of reactive oxygen species (ROSs) via NADPH oxidase, induce oxidative stress that lead to cell death. In the current study, we investigated the molecular events underlying the process that AGEs induce cell death in SH-SY5Y cells and rat cortical neurons. We found: (1) AGEs increase intracellular ROSs; (2) AGEs cause cell death after ROSs increase; (3) oxidative stress-induced cell death is inhibited via the blockage of AGEs receptor (RAGE), the down-regulation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and the increase of scavenging by anti-oxidant alpha-lipoic acid (ALA); (4) endoplasmic reticulum (ER) stress was triggered by AGE-induced oxidative stress, resulting in the activation of C/EBP homologous protein (CHOP) and caspase-12 that consequently initiates cell death, taurine-conjugated ursodeoxycholic acid (TUDCA) inhibited AGE-induced ER stress and cell death. Blocking RAGE?CNADPH oxidase, and RAGE?CNADPH oxidase?CROSs and ER stress scavenging pathways could efficiently prevent the oxidative and ER stresses, and consequently inhibited cell death. Our results suggest a new prevention and or therapeutic approach in AGE-induced cell death.  相似文献   

17.
Mutations in presenilin (PS) genes cause majority of early onset Alzheimer's disease (AD), an age related neurodegenerative disorder. PS proteins undergo proteolytic cleavage to produce biologically active fragments, which constitute the catalytic core of the gamma-secretase enzyme. This enzyme cleaves beta-amyloid precursor protein (betaAPP) to generate Abeta peptides, which are influenced by sex steroids. Recently we have reported the downregulation of PS1 expression by sex steroids in the brain of adult mice. Here we have examined the effect of gonadectomy and subsequent administration of gonadal hormones 17beta-estradiol and testosterone on the level of PS2 C-terminal fragment (CTF) in the cerebral cortex of adult and old AKR strain mice of both sexes. PS2 expression was downregulated following gonadectomy, but upregulated by supplementation of gonadal steroids in both age groups and sexes. Thus these results demonstrate up-regulation of PS2 protein expression by sex steroids, which in turn may influence PS2 associated brain functions.  相似文献   

18.
Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine ( l -CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with l -CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, l -CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. l -CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by l -CAR. In addition, l -CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of l -CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent.  相似文献   

19.
Anterior uveitis associated with Behcet's disease and ankylosing spondylitis preferentially occurs in adult men, which may suggest the effects of sex hormones on acute anterior uveitis. Recently, estrogen receptors in the vascular endothelium have been reported to be involved in several pathological conditions. In the present study, we examined the gender differences in susceptibility to endotoxin-induced uveitis (EIU) and the effects of estrogen on anterior inflammation. EIU was induced in adult male, female, and ovariectomized female Lewis rats (200 g) by hind footpad injection of 200 microg of LPS. In EIU, cellular infiltration was more marked in male than in female rats, and ovariectomy increased cellular infiltration. Treatment with 10 microg of 17beta-estradiol significantly reduced the cell number in male and ovariectomized female rats with EIU. Estrogen receptor immunoreactivity was found in the nucleus of vascular endothelium and in some stromal cells of the iris-ciliary body. Semiquantitative PCR revealed that E-selectin and IL-6 gene expressions were increased in rats following LPS injection, and an overdose of tamoxifen, an estrogen receptor antagonist, reversed the effect of 17beta-estradiol on E-selectin, but not its effect on IL-6. These observations suggested that the down-modulation of these inflammatory genes by estrogen may contribute to the reduction in cellular infiltration in acute anterior uveitis.  相似文献   

20.
Plasma patterns of prostaglandin F2 alpha (PGF2 alpha) and sex hormones (progesterone, androgens and 17 beta-estradiol) have been studied in the female crested newt, Triturus carnifex (Laur.), during the annual sexual cycle. The effects of exogenous PGF2 alpha on sex hormones were determined. In addition, the effects of one week's captivity on plasma PGF2 alpha and sex hormones were reported. PGF2 alpha plasma level peaked in April, was low in summer, and progressively increased during the autumn to peak again in December. The April PGF2 alpha coincided with a 17 beta-estradiol rise, and with a progesterone drop. The autumn PGF2 alpha increase was coupled to a 17 beta-estradiol rise, and therefore it has been tentatively related to ovary and oviduct development. In newts collected in April, moreover, a PGF2 alpha-dependent 17 beta-estradiol synthesis could occur, since PGF2 alpha injection induced a significant 17 beta-estradiol plasma increase. These findings led us to suppose that PGF2 alpha intervenes in spring breeding season termination through the induction of a 17 beta-estradiol synthesis as in other amphibian species. PGF2 alpha injection caused a progesterone decrease, probably by inducing corpora lutea lysis. The patterns of plasma sex hormones were consistent with the results reported for the same newt species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号