首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report data on genetic drift of mitochondrial DNA (mtDNA) haplotypes in a natural brown trout (Salmo trutta) population in Sweden. Large temporal frequency shifts were observed over the 14 consecutive year classes studied. The observed rate of drift was used to estimate the effective size of the population. This effective size applies to the female segment of the population as mtDNA is maternally inherited. The magnitude of mtDNA haplotype frequency change is compared with the corresponding allele frequency changes at 14 allozyme loci in the same population. The female effective size is estimated as 58, which is approximately half the effective size of 97 for the total population (both sexes) previously obtained from the shifts of allozyme allele frequencies.  相似文献   

2.
Using five restriction enzymes, geographical variation of mitochondrial DNA (mtDNA) in Bombina bombina and B. variegata was studied in samples from 20 locations. Each restriction enzyme produced a species-specific fragment pattern. B. bombina haplotypes A and B were closely related to each other. In contrast, haplotypes A and B of B. variegata formed two distinct lineages. A very distinctive haplotype (C) was found in the Carpathian Mountains, whereas two other haplotypes, D and E (differing by a single AvaI site), were present in western Europe and the Balkans, respectively. Populations polymorphic for haplotypes D and E occurred in the central Balkans where the haplotypes could replace each other clinally. mtDNA sequence divergence between B. bombina and B. variegata was estimated as 6.0-8.1% and 4.7-5.2% between type C and types D/E of B. variegata. The latter divergence is contrary to allozyme and morphological data that place the western and Carpathian B. v. variegata together (Nei's D = 0.07) and separate them from the Balkan subspecies B. v. scabra (Nei's D = 0.18). Broad interspecific correlation among morphology, allozymes and mtDNA types in European fire-bellied toads argues that, despite continuous hybridization (interrupted perhaps during Pleistocene glacial maxima), little or no mtDNA introgression between the species has occurred outside the narrow hybrid zones that separate these parapatric species.  相似文献   

3.
We examined the spatial distribution of maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA polymorphisms in a permanently marked stand of ponderosa pine (Pinus ponderosa Laws). Movement of maternally inherited mtDNA occurs only via seed dispersal, and mtDNA haplotypes showed significant patch structure. Moreover, individuals within patches identified by mtDNA haplotypes were related approximately as half-sibs based upon analysis of allozyme genotypes. Thus, seed dispersal is limited within the population, and creates matrilineal clusters in space. By contrast, paternally inherited cpDNA is dispersed by movement of both seed and pollen. Chloroplast DNA polymorphisms showed no evidence of patch structure, but rather a weak (and nonsignificant) trend toward hyperdispersion, suggesting nearly unlimited movement of pollen among trees within this stand. Two of the trees had unique allozyme alleles, which were used to directly measure pollen movement away from those trees. Marked pollen was as likely to disperse across the population as it was to fertilize near neighbors.  相似文献   

4.
Since mitochondrial DNA (mtDNA) are maternally inherited without recombination, geographic distribution of mtDNA in semiterrestrial cercopithecines is considered to be influenced by female philopatry. I examined the effect of sex difference in migration patterns on geographic distribution in a habitat whose environment has changed frequently. I investigated ten groups (n = 77) of grivets (Cercopithecus aethiops aethiops) along a 600-km stretch of the Awash River, Ethiopia. I examined the mtDNA distribution among natural local populations whose nuclear variation was already shown to have a widely homogeneous distribution. RFLP analysis of whole mtDNA genome using 17 enzymes identified ten haplotypes in five clusters (haplogroups). Sequence divergence within haplogroups ranged from 0.17%–0.38%, while divergence between haplogroups ranged between 1.0%–2.5%. Haplogroups were distributed in blocks which ranged from 120–250 km along the Awash River. The haplotype distribution pattern of males indicated that they migrate between the boundaries of these blocks. Moreover, a clumped distribution pattern suggests the history of matrilineal distribution by group fission and geographic expansion.  相似文献   

5.
Analysis of mitochondrial DNA (mtDNA) haplotypes of Sclerotinia sclerotiorum points to a common origin of some genotypes from agricultural populations, especially when compared with two wild populations that are sharply distinguished from the agricultural sample and from each other. Five agricultural population samples from canola (Alberta, Canada and Norway), cabbage (North Carolina, USA), sunflower (Manitoba, Canada and Queensland, Australia) and two Norwegian populations from a wild plant, Ranunculus ficaria were compared. Haplotypes were determined by Southern hybridization of purified organelle DNA from S. sclerotiorum and Neurospora crassa to total genomic DNA of S. sclerotiorum. Each isolate had one haplotype. Haplotypes of S. sclerotiorum from R. ficaria were different between the two wild populations and also from all haplotypes observed in the agricultural populations. Among the wild isolates, DNA fingerprint, mtDNA haplotype and location in the sampling transect were all associated. Among the agricultural isolates, four haplotypes were observed in at least two agricultural populations and one haplotype was observed in all agricultural populations. In the Canadian canola sample some clones had one mtDNA haplotype, indicating association with DNA fingerprint, some clones had more than one haplotype, and some groups of clones shared haplotypes. Some of the haplotype diversity may be due to the presence of extra-chromosomal elements associated with the mitochondria of S. sclerotiorum.  相似文献   

6.
I analyzed geographic partitioning of mitochondrial DNA (mtDNA) restriction-site variants in the spotted salamander, Ambystoma maculatum. Two highly divergent and geographically separate genetic lineages were identified that differed by a minimum of 19 restriction sites (6% sequence divergence). One of the lineages has a disjunct distribution with very closely related haplotypes occurring in Missouri, Arkansas, North Carolina, and Virginia. The other lineage is found in Michigan, Illinois, and Alabama. The geographic separation of highly divergent mtDNA haplotypes, a pattern that was predicted based on the sedentary nature of these salamanders, is evidence for long-term barriers to gene flow. In contrast, the large-scale disjunction of very similar haplotypes suggests recent, long-distance gene flow and does not match the phylogeographic expectation for a small terrestrial vertebrate. I explain this potential contradiction in the level of importance assigned to gene flow by a scenario in which historical barriers to gene flow account for the two divergent mtDNA assemblages, but stochastic sorting of ancestral polymorphism is responsible for the large-scale geographic disjunction. Ten of 16 populations collected in the Ozark Highlands were fixed for the same haplotype. I attribute this lack of detectable variation to recent colonization of this area, a hypothesis that is supported by paleoecological data and demonstrates the potential benefits of combining data from paleobotany, geology, and other disciplines to reconstruct the historical biogeography of a species.  相似文献   

7.
King  Charles E. 《Hydrobiologia》1989,186(1):375-380
Methods are presented to extract and purify mitochondrial DNA from the rotifer Brachionus plicatilis. The mtDNA obtained is of sufficient purity for digestion with restriction endonucleases. EcoR I restriction patterns are presented for 4 geographically separated clones. A restriction map based on digestion with 5 different restriction enzymes is included for one of these clones. Finally, use of mtDNA analysis for studies on the population structure and biogeography of rotifers is discussed.  相似文献   

8.
Wolbachia are maternally inherited bacteria, which typically spread in the host population by inducing cytoplasmic incompatibility (CI). In Drosophila melanogaster, Wolbachia is quite common but CI is variable, with most of the studies reporting low levels of CI. Surveying mitochondrial DNA (mtDNA) variation and infection status in a worldwide D. melanogaster collection, we found that the Wolbachia infection was not randomly distributed among flies with different mtDNA haplotypes. This preferential infection of some mtDNA haplotypes could be caused by a recent spread of mtDNA haplotypes associated with the infection. The comparison of contemporary D. melanogaster samples with lines collected more than 50 years ago shows that indeed one haplotype with a high incidence of Wolbachia infection has increased in frequency. Consistent with this observation, we found that the acquisition of a Wolbachia infection in a population from Crete was accompanied with an almost complete mtDNA replacement, with the Wolbachia-associated haplotype becoming abundant. Although it is difficult to identify the evolutionary forces causing the global increase of wMel, the parallel sweep of Wolbachia and an mtDNA haplotype suggests a fitness advantage of the Wolbachia infection.  相似文献   

9.
The pine engraver Ips pini (Say) is known to include three pheromone races, but gene flow between these races has not been investigated. We used maternally inherited mitochondrial DNA (mtDNA) variation to infer gene flow between 22 widely distributed North American populations of I. pini for a total of 217 individuals, based on 354 bp of the cytochrome oxidase I gene. Gene flow was estimated cladistically as migrants per generation (Nm) and as haplotype variation between populations (Nst). Three distinct mtDNA haplotype lineages, generally corresponding to eastern (I), Rocky Mountain (II) and western (III) regions of North America, were resolved with a total of 34 distinct I. pini haplotypes. The distributions of these lineages were largely congruent with the geographical ranges of the ''New York'', ''California'' and ''Idaho–Montana'' pheromone races. Only individuals with lineage I mtDNA were observed among eastern populations, whereas individuals with lineage II or III mtDNA predominated among western populations. Gene flow (Nm and Nst) was generally moderate between all populations. However, the presence of lineage I mtDNA on the eastern side of western North America and the absence of lineage II and III mtDNA in eastern North America suggest directional gene flow from east to west. These results indicate that female-controlled assortative mating among pheromone races may disrupt gene flow between conspecifics, reflecting incomplete pre-mating barriers.  相似文献   

10.
Genetic variation of mitochondrial DNA (mtDNA) in 18 great tits (Parus major) from three neighboring localities in Sweden was investigated with eight tetranucleotide restriction endonucleases. The 18 individuals could be separated into 13 different maternal lineages. The high number of female lineages present in this regional population contrasts with a low level of sequence divergence between the different mtDNA clones, with a mean of 0.19% sequence divergence between all individuals. There was no obvious spatial structuring of mtDNA clones among the three localities. The presence of a high number of different clones with a low degree of sequence divergence could be explained by the effects of a large long-term effective population size, with the mtDNA clones having diverged about 25,000–200,000 years ago.This study was supported by the Swedish Natural Science Research Council, the Erik Philip-Sörensen Foundation, and the Nilsson-Ehle Foundation.  相似文献   

11.
Substantiated cases of ring species in mammals are rare. I examined the variation in mitochondrial DNA (mtDNA) of Perognathus amplus and P. longimembris in and around Arizona to test the hypothesis proposed by Hoffmeister (1986) that these two taxa are members of a single ring species demonstrating circular overlap. Through digestion of purified mtDNA from 45 P. amplus and 35 P. longimembris with 16 type II restriction enzymes, I identified 38 distinct haplotypes that belong to eight different evolutionary lineages. I then amplified and directly sequenced a portion of the mitochondrial cytochrome-b region from individuals representative of the lineages identified by restriction fragments, and used these data for phylogeny reconstruction in both a parsimony and neighbor-joining setting. The resulting phylogeny was consistent with the ring hypothesis, but, based on the incompleteness of the ring of subspecies and the apparent timing of evolutionary events in this group, I conclude that P. amplus and P. longimembris are distinct lineages that have completed the speciation process.  相似文献   

12.
Breeding redpoll finches (Aves: Carduelinae) show extensive plumage and size variability and, in many cases, a plumage polymorphism that is not related to age or sex. This has been ascribed to extreme phenotypic variation within a single taxon or to moderate variability within distinct taxa coupled with hybridization. The predominant view favors the recognition of two largely sympatric species: Carduelis flammea, comprised of four well-marked subspecies—flammea, cabaret, islandica, and rostrata; and C. hornemanni, comprised of two subspecies—hornemanni and exilipes. We studied representative samples of these putative subspecies (except islandica) for variation in mitochondrial DNA (mtDNA). Using 20 informative restriction enzymes that recognized 124 sites (642 base pairs [bp] of sequence or ≈ 3.7% of the molecule), we identified 17 RFLP haplotypes in the 31 individuals surveyed. The haplotypes formed a simple phylogenetic network with most clones diverging by a single site difference from a common haplotype found in almost half of the individuals. Within populations and taxa, levels of mtDNA diversity were similar to those observed in other avian species. The pattern of mtDNA divergence among populations was statistically unrelated to their geographic or traditional taxonomic relationships, and the estimated distance between the two traditionally recognized species was very small relative to those typically observed among avian sister species.  相似文献   

13.
Complete mitochondrial genomes (mtDNA) of five individuals representing two haplotypes of Bombina bombina and three of Bombina variegata were compared using restriction site maps. Phylogenetic analyses reveal three ancient mitochondrial lineages: (1) two very similar haplotypes A and B of B. bombina ; (2) almost identical haplotypes D and E of B. variegata ; and (3) haplotype C of B. variegata . Haplotype C is as different from haplotypes D/E as from A/B. These data are strikingly discordant with relationships based on morphology and allozymes. Haplotypes C and D/E represent a pre-Pleistocene mitochondrial divergence within B. variegata , nearly coincident with speciation between B. variegata and B. bombina . Geographical partitioning of the two divergent B. variegata mitochondrial lineages indicates repeated localization of the lineages in separate glacial refugia during the Pleistocene. That nuclear genes do not show a similar divergence, but rather indicate relatively free genetic exchange between populations with divergent mtDNAs, suggests that males dispersed much more widely than females during expansions from glacial refugia. Comparison of Bombina mtDNA maps with a restriction site map of Xenopus laevis mtDNA revealed 16 homologous sites; 12 of these may be nearly invariant across primitive anuran mtDNAs. Two distinct regions of heteroplasmy, representing two regions with variable numbers of sequence repeats [length variable (LV) regions], were characterized. Comparison with the Xenopus map places LV1, present in all five haplotypes, near the 5'-end of the control region, and LV2 present only in B. variegata , near the 3'-end. Although phylogenetic analyses did not group the two major B. variegata lineages together, presence of LV2 in both lineages supports placement of both within B. variegata .  相似文献   

14.
Abstract Genetic markers that differ in mode of inheritance and rate of evolution (a sex‐linked Z‐specific micro‐satellite locus, five biparentally inherited microsatellite loci, and maternally inherited mitochondrial [mtDNA] sequences) were used to evaluate the degree of spatial genetic structuring at macro‐ and microgeographic scales, among breeding regions and local nesting populations within each region, respectively, for a migratory sea duck species, the spectacled eider (Somateria fisheri). Disjunct and declining breeding populations coupled with sex‐specific differences in seasonal migratory patterns and life history provide a series of hypotheses regarding rates and directionality of gene flow among breeding populations from the Indigirka River Delta, Russia, and the North Slope and Yukon‐Kuskokwim Delta, Alaska. The degree of differentiation in mtDNA haplotype frequency among breeding regions and populations within regions was high (φCT= 0.189, P < 0.01; φSC= 0.059, P < 0.01, respectively). Eleven of 17 mtDNA haplotypes were restricted to a single breeding region. Genetic differences among regions were considerably lower for nuclear DNA loci (sex‐linked: φST= 0.001, P > 0.05; biparentally inherited microsatellites: mean θ= 0.001, P > 0.05) than was observed for mtDNA. Using models explicitly designed for uniparental and biparentally inherited genes, estimates of spatial divergence based on nuclear and mtDNA data together with elements of the species' breeding ecology were used to estimate effective population size and degree of male and female gene flow. Differences in the magnitude and spatial patterns of gene correlations for maternally inherited and nuclear genes revealed that females exhibit greater natal philopatry than do males. Estimates of generational female and male rates of gene flow among breeding regions differed markedly (3.67 × 10‐4 and 1.28 × 10‐2, respectively). Effective population size for mtDNA was estimated to be at least three times lower than that for biparental genes (30,671 and 101,528, respectively). Large disparities in population sizes among breeding areas greatly reduces the proportion of total genetic variance captured by dispersal, which may accelerate rates of inbreeding (i.e., promote higher coancestries) within populations due to nonrandom pairing of males with females from the same breeding population.  相似文献   

15.
Plants offer excellent models to investigate how gene flow shapes the organization of genetic diversity. Their three genomes can have different modes of transmission and will hence experience varying levels of gene flow. We have compiled studies of genetic structure based on chloroplast DNA (cpDNA), mitochondrial DNA (mtDNA) and nuclear markers in seed plants. Based on a data set of 183 species belonging to 103 genera and 52 families, we show that the precision of estimates of genetic differentiation (G(ST)) used to infer gene flow is mostly constrained by the sampling of populations. Mode of inheritance appears to have a major effect on G(ST). Maternally inherited genomes experience considerably more subdivision (median value of 0.67) than paternally or biparentally inherited genomes (approximately 0.10). G(ST) at cpDNA and mtDNA markers covary narrowly when both genomes are maternally inherited, whereas G(ST) at paternally and biparentally inherited markers also covary positively but more loosely and G(ST) at maternally inherited markers are largely independent of values based on nuclear markers. A model-based gross estimate suggests that, at the rangewide scale, historical levels of pollen flow are generally at least an order of magnitude larger than levels of seed flow (median of the pollen-to-seed migration ratio: 17) and that pollen and seed gene flow vary independently across species. Finally, we show that measures of subdivision that take into account the degree of similarity between haplotypes (N(ST) or R(ST)) make better use of the information inherent in haplotype data than standard measures based on allele frequencies only.  相似文献   

16.
Eukaryotic mitochondria are mostly uniparentally (maternally) inherited, although mtDNA heteroplasmy has been reported in all major lineages. Heteroplasmy, the presence of more than one mitochondrial genome in an individual, can arise from recombination, point mutations, or by occasional transmission of the paternal mtDNA (=paternal leakage). Here, we report the first evidence of mtDNA paternal leakage in brown algae. In Denmark, where Fucus serratus L. and Fucus evanescens C. Agardh have hybridized for years, we found eight introgressed individuals that possessed the very distinct haplotypes of each parental species. The finding of heteroplasmy in individuals resulting from several generations of backcrosses suggests that paternal leakage occurred in earlier generations and has persisted through several meiotic bottlenecks.  相似文献   

17.
Chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) were studied in 24 populations of Prunus spinosa sampled across Europe. The cpDNA and mtDNA fragments were amplified using universal primers and subsequently digested with restriction enzymes to obtain the polymorphisms. Combinations of all the polymorphisms resulted in 33 cpDNA haplotypes and two mtDNA haplotypes. Strict association between the cpDNA haplotypes and the mtDNA haplotypes was detected in most cases, indicating conjoint inheritance of the two genomes. The most frequent and abundant cpDNA haplotype (C20; frequency, 51 %) is always associated with the more frequent and abundant mtDNA haplotype (M1; frequency, 84 %). All but two of the cpDNA haplotypes associated with the less frequent mtDNA haplotype (M2) are private haplotypes. These private haplotypes are phylogenetically related but geographically unrelated. They form a separate cluster on the minimum-length spanning tree.  相似文献   

18.
A purified mitochondrial DNA (mtDNA) probe was used to examine restriction fragment length polymorphisms produced by six restriction enzymes ( Xba I, Eco RV, Ava II, Hinf I, Hae III, Mbo I) in 915 brown trout from western Europe. A total of 20 composite haplotypes were found with one to seven haplotypes in individual populations. Icelandic trout samples from north, south, east, and west coast drainages showed only a single common haplotype in contrast to the high level of polymorphism found in Irish and Scottish populations. The phylogeny of mtDNA haplotypes and the pattern of haplotype distribution suggests that post-glacial colonization of brown trout in NW Europe was more complex than the dual colonization model which has been proposed on the basis of differential LDH-5* allele distribution. For example, Lough Melvin (Ireland) appears to have been independently  相似文献   

19.
Over most of their natural northern Pacific Ocean range, pink salmon (Oncorhynchus gorbuscha) spawn in a habitat that was repeatedly and profoundly affected by Pleistocene glacial advances. A strictly two-year life cycle of pink salmon has resulted in two reproductively isolated broodlines, which spawn in alternating years and evolved as temporal replicates of the same species. To study the influence of historical events on phylogeographical and population genetic structure of the two broodlines, we first reconstructed a fine-scale mtDNA haplotype genealogy from a sample of 80 individuals and then determined the geographical distribution of the major genealogical assemblages for 718 individuals sampled from nine Alaskan and eastern Asian even- and nine odd-year pink salmon populations. Analysis of restriction site states in seven polymerase chain reaction (PCR)-amplified mtDNA regions (comprising 97% of the mitochondrial genome) using 13 endonucleases resolved 38 haplotypes, which clustered into five genealogical lineages that differed from 0.065 to 0.225% in net sequence divergence. The lineage sorting between broodlines was incomplete, which suggests a recent common ancestry. Within each lineage, haplotypes exhibited star-like genealogies indicating recent population growth. The depth of the haplotype genealogy is shallow ( approximately 0.5% of nucleotide sequence divergence) and probably reflects repeated decreases in population size due to Pleistocene glacial advances. Nested clade analysis (NCA) of geographical distances showed that the geographical distribution observed for mitochondrial DNA (mtDNA) haplotypes resulted from alternating influences of historical range expansions and episodes of restricted dispersal. Analyses of molecular variance showed weak geographical structuring of mtDNA variation, except for the strong subdivision between Asian and Alaskan populations within the even-year broodline. The genetic similarities observed among and within geographical regions probably originated from postglacial recolonizations from common sources rather than extensive gene flow. The phylogeographical and population genetic structures differ substantally between broodlines. This can be explained by stochastic lineage sorting in glacial refugia and perhaps different recolonization routes in even- and odd-year broodlines.  相似文献   

20.
The number of Asian black bears (Ursus thibetanus) in Japan has been reduced and their habitats fragmented and isolated because of human activities. Our previous study examining microsatellite DNA loci revealed significant genetic differentiation among four local populations in the western part of Honshu. Here, an approximate 700-bp nucleotide sequence of mitochondrial DNA (mtDNA) control region was analysed in 119 bears to infer the evolutionary history of these populations. Thirteen variable sites and variation in the number of Ts at a T-repeat site were observed among the analysed sequences, which defined 20 mtDNA haplotypes with the average sequence divergence of 0.0051 (SD = 0.00001). The observed haplotype frequencies differed significantly among the four populations. Phylogeographic analysis of the haplotypes suggested that black bears in this region have gone through two different colonisation histories, since the observed haplotypes belonged to two major monophyletic lineages and the lineages were distributed with an apparent border. The spatial genetic structure revealed by using mtDNA was different from that observed using microsatellite DNA markers, probably due to female philopatry and male-biased dispersal. Since nuclear genetic diversity will be lost in the three western populations because of the small population size and genetic isolation, their habitats need to be preserved, and these four populations should be linked to each other by corridors to promote gene flow from the easternmost population with higher nuclear genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号