首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A decrease in plasma Ca2+ and increases in plasma immunoreactive parathyroid hormone (PTH) have been reported in spontaneously hypertensive (SH) rats as compared with normotensive Wistar-Kyoto (WKy) rats. These changes should lead to a higher plasma 1,25(OH)2D (1,25-dihydroxycholecalciferol/1,25-dihydroxyergocalciferol) concentration in SH rat if the kidney responds appropriately. Plasma 1,25(OH)2D, however, has been reported to be normal in SH rats, suggesting possible impairments of vitamin D metabolism in this animal model of hypertension. To test this possibility, we studied the effect of PTH on renal production of 1,25(OH)2D in SH rats before (4 weeks of age) and after (12 weeks of age) the onset of hypertension. Basal serum levels of 1,25(OH)2D were normal in SH rats at both ages. At 4 weeks of age, the rise in serum 1,25(OH)2D after PTH injection (50 units subcutaneously every 2 h; four times) was also normal in SH rats. By contrast, at 12 weeks of age, the rise in serum 1,25(OH)2D was approximately one-half of that in WKy rats, despite the similar rises in serum Ca2+ levels in both groups by PTH injection. The attenuated rise in serum 1,25(OH)2D in SH rats was consistent with the impaired response of renal 1-hydroxylase (25-hydroxycholecalciferol 1 alpha-hydroxylase) activity to PTH. Basal 1,25(OH)2D production by the kidney in SH rat was higher than that in WKy rats both at 4 and 12 weeks of age. These data suggest that, in SH rats: serum 1,25(OH)2D is inappropriately low in relation to the elevated PTH and this may be due, at least in part, to the impaired responsiveness to PTH of renal 1-hydroxylase and to the enhanced metabolism of 1,25(OH)2D, and elevated PTH or other agents may stimulate the 1-hydroxylase in the kidney even before the onset of hypertension.  相似文献   

2.
The present study was undertaken to evaluate the effect of 24,25(OH)2D3 on serum calcium concentration in rats with reduced renal mass. Adult 5/6 nephrectomized male rats were divided into four groups: (i) control rats, (ii) rats treated with 1,25(OH)2D3, (iii) rats treated with 24,25(OH)2D3, and (iv) rats treated with 1,25(OH)2D3 and 24,25(OH)2D3. After 4 days, serum calcium in the 1,25(OH)2D3-treated group was 7.13 +/- 0.32 meq/liter (P less than 0.001 vs control). With the combination of 1,25(OH)2D3 and 24,25(OH)2D3 serum calcium was higher than that in control, 6.25 +/- 0.5 meq/liter (P less than 0.001 vs control), but lower than that in rats receiving 1,25(OH)2D3 alone (P less than 0.05). No change in serum calcium was seen in animals treated with 24,25(OH)2D3 alone. On the eighth day serum calcium in the 1,25(OH)2D3-treated group, 6.52 +/- 0.25, was higher than in the 1,25(OH)2D3 + 24,25(OH)2D3 group, 5.87 +/- 0.17 meq/liter, P less than 0.05, P less than 0.001 vs control. In both 1,25(OH)2D3- and 1,25(OH)2D3 + 24,25(OH)2D3-treated rats, hypercalciuria of similar magnitude occurred on the fourth and eighth day of treatment. No change in urinary calcium was seen in the control and 24,25(OH)2D3-treated rats. Thus, in 5/6 nephrectomized rats combined administration of 1,25(OH)2D3 and 24,25(OH)2D3 attenuates the calcemic response to 1,25(OH)2D3 without changes in urinary calcium excretion. These observations suggest that the effect of 24,25(OH)2D3 on serum calcium is different in 5/6 nephrectomized rats as compared to normal rats, in which an augmentation of serum calcium was observed following administration of both vitamin D metabolites. The effect of 24,25(OH)2D3 on serum calcium in rats with reduced renal mass may result from a direct effect of 24,25(OH)2D3 on the bone.  相似文献   

3.
Renal calcium binding protein (CaBP), a vitamin D-dependent protein of 28,000 Mr, may be involved in calcium transport by cells of the renal tubule. The streptozotocin-diabetic rat is hypercalciuric and shows markedly decreased concentration of 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] in serum and of CaBP in small intestine. To examine the relationship of renal CaBP in diabetes to 1,25-(OH)2D3 and urinary calcium excretion, renal CaBP, serum 1,25-(OH)2D3, and urinary calcium were measured in control, diabetic, and insulin-treated diabetic rats. Treatment of the diabetic rat with insulin decreased urinary calcium excretion and elevated 1,25-(OH)2D3 toward normal. Renal CaBP was found to be the same in controls and diabetics despite a tenfold difference in concentration of 1,25-(OH)2D3 in serum, and to be unaffected by insulin treatment, which elevated 1,25-(OH)2D3 by a factor of 7 above untreated diabetics. It is concluded that in the diabetic rat either (1) the threshold concentration of 1,25-(OH)2D3 for inducing synthesis of renal CaBP is set at a much lower level than that for intestinal CaBP, or (2) since both 1,25-(OH)2D3 and renal CaBP are produced in the kidney, 1,25-(OH)2D3 exerts a paracrine effect on renal CaBP production because of its high local concentration. The increased urinary calcium excretion in the untreated streptozotocin-diabetic rat is not secondary to an alteration in renal CaBP.  相似文献   

4.
Weanling rats on a normal diet mobilized bone calcium in response to 11 daily injections of 125 ng of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3)/100 g, body weight. This effect was most evident in the tibial midshaft, where calcium levels were reduced by 38% compared to untreated controls. Calcium levels were reduced by only 13% in the proximal tibial metaphysis, a region formed by longitudinal growth during the 11-day experiment. The concurrent daily administration of the vitamin K antagonist warfarin dramatically increased calcium mobilization from the tibial metaphysis of 1,25-(OH)2D3-treated rats. Compared to rats which received 1,25-(OH)2D3 alone, the calcium content of the tibial metaphysis in rats treated with 1,25-(OH)2D3 plus warfarin was reduced by 40.4% (p less than 0.001) and the total dry weight was reduced by 35.0% (p less than 0.001). There was no effect of warfarin on bone calcium content or dry weight in the absence of 1,25-(OH)2D3 treatment. These observations indicate that a component of the steroidal hormone action of 1,25-(OH)2D3 on bone may be mediated by increased synthesis of a vitamin K-dependent protein. The action of this vitamin K-dependent protein would oppose net calcium loss in the tibial metaphysis of 1,25-(OH)2D3-treated rats. This vitamin K-dependent protein may be the bone Gla protein, the only bone specific protein whose synthesis is known to be increased by 1,25-(OH)2D3.  相似文献   

5.
Densitometric analysis of single-dimension gels consistently demonstrated that, in addition to rat renal calcium binding protein (CaBP) (Mr 28,000), two other kidney proteins of Mr 16,500 and Mr 18,000 were significantly enriched in their contents in the vitamin D-replete rat. Partial characterization of the Mr 18,000 and 16,500 proteins revealed that these proteins were heat-stable and distinct from calmodulin, as determined by their inability to undergo the calcium-dependent mobility shift in sodium dodecyl sulfate gels which is characteristic of calmodulin. The Mr 16,500 and Mr 18,000 kidney proteins did not cross-react with rat renal or rat intestinal CaBP antisera, as assessed by radioimmunoassay and Western blot analysis. A comparison of peptide maps of tryptic digests of these proteins and purified rat renal CaBP, as analyzed by high-pressure liquid chromatography, revealed no apparent homology. Protein synthesis studies using [35S]methionine and short-term tissue culture of kidney cortex fragments indicated that the most pronounced effect of vitamin D or 1,25 dihydroxyvitamin D3 was increased synthesis of the Mr 28,000 protein (3.2- to 4.6-fold increase compared to -D rats, P less than 0.001). Synthesis of a Mr 54,500 protein increased by 1.3- to 1.5-fold (P less than 0.05) and [35S]methionine incorporation into a Mr 66,000 protein decreased by 1.2- to 1.3-fold (P less than 0.05) in +D rats. This study represents the first detailed characterization of the effects of vitamin D on the composition and synthesis of rat kidney proteins. The data indicate that the most significant effect of vitamin D on kidney proteins is increased synthesis of the Mr 28,000 CaBP, suggesting that a major role of vitamin D in renal function is regulation of calcium transport at the distal tubule. However, dietary vitamin D or 1,25(OH)2D3 can influence the expression as well as the suppression of other specific kidney proteins.  相似文献   

6.
We compared the fractional absorption of calcium (FACa, 6 h, % TD) and the radiocalcium transit (% TD per min) in seven glucocorticoid-treated patients (10-25 mg prednisolone per day) and in seven normal subjects, in the basal state and 12 h after an oral dose of synthetic 1,25-(OH)2D (3 micrograms). In the basal state, the radiocalcium transit was significantly decreased (P less than 0.02) at 15 min in patients treated with prednisolone, but FACa at 6 h was not significantly decreased (51 +/- 5 vs. 60 +/- 5% TD). 12 h after an oral dose of 1,25-(OH)2D which resulted in supraphysiologic plasma levels, FACa increased significantly (P less than 0.02) in both groups but the peak absorption rate of Ca remained lower in the corticoid-treated patients than in controls (P less than 0.02). The results suggest that glucocorticoids decrease the 1,25-(OH)2D-dependent transport of calcium across the proximal small intestine.  相似文献   

7.
The phosphatidylcholine content of both the intestinal and renal brush-border membranes and ion transport are affected by 1,25-dihydroxycholecalciferol (1,25(OH)2D3). To investigate the mechanism of this effect, liposomes were prepared containing self-quenching concentrations of fluorescent phospholipid derivatives. When these liposomes were incubated with rat renal brush-border membrane vesicles, an immediate increase in the relative fluorescence of N-4-nitrobenz-2-oxa-1,3-diazole phosphatidylcholine (NBD-PC) was detected, indicating transfer of NBD-PC into a non-quenched membrane. Addition of 1,25(OH)2D3 to the liposomes produced a dose-dependent stimulation of NBD-PC transfer to the acceptor brush-border membrane vesicles. Peripheral fluorescence was visible when the brush-border membrane vesicles were viewed with a fluorescent microscope. Using brush-border membrane vesicles from kidneys of vitamin D-deficient animals, quantitation of lipid transfer revealed a 1,25(OH)2D3 (10(-7) M) stimulation of NBD-PC transfer from 1.38 +/- 0.27 to 2.07 +/- 0.26 micrograms/h, and of PC transfer, assessed by vesicle phosphatidylcholine content, from 49.7 +/- 12 to 57.3 +/- 12 micrograms/mg protein per h (P less than 0.05). There was no significant transfer of N-(lissamine rhodamine B sulfonyl)dioleoylphosphatidylethanolamine (N-Rh-PE). In the absence of hormone, the amount of NBD-PC transferred to brush-border membrane vesicles prepared from normal rats was significantly greater than that transferred to brush-border membrane vesicles prepared from vitamin D-deficient animals (2.12 +/- 0.02 vs. 1.39 +/- 0.27 micrograms of NBD-PC/h, P less than 0.05). Both physiologic and pharmacologic concentrations of 1,25(OH)2D3 stimulated NBD-PC transfer with maximum response at 10(-14) M (2.98 +/- 0.15 micrograms/h). 24,25-Dihydroxycholecalciferol and 25-hydroxycholecalciferol (25(OH)D3) also stimulated transfer, although dose-response curves were less effective than for 1,25(OH)2D3. Cortisol and vitamin D-3 did not stimulate transfer. 1,25(OH)2D3 did not stimulate NBD-PC transfer between liposome populations.  相似文献   

8.
Chemically synthesized 1 alpha-hydroxy-25-fluorovitamin D3 was compared to 1,25-dihydroxyvitamin D3 for potency in the chick intestinal cytosol-binding protein assay, induction of intestinal calcium transport, mobilization of calcium from bone, and epiphyseal plate calcification in the rat. The 25-fluorinated analogue causes 50% displacement of 1,25-dihydroxy[23,24-3H]D3 at 1.8 X 10(-8) M in the competitive protein-binding assay, whereas only 5.6 X 10(-11) M of unlabeled 1,25-dihydroxyvitamin D3 is needed for equal competition. This 315-fold difference between and 1 alpha-hydroxy-25-fluorovitamin D3 indicates that the fluoro analogue is about equipotent with 1 alpha-hydroxyvitamin D3 in the protein-binding assay. However, 1 alpha-hydroxy-25-fluorovitamin D3 is 1/50 as active as 1,25-dihydroxyvitamin D3 in vivo in the stimulation of intestinal calcium transport and bone calcium mobilization in vitamin D deficient rats on a low-calcium diet. Likewise, 1 alpha-hydroxy-25-fluorovitamin D3 is about 40 times less active than 1,25-dihydroxyvitamin D3 in inducing endochondrial calcification in rachitic rats. No selective actions of 1alpha-hydroxy-25-fluorovitamin D3 were noted. Since the 25 position of the analogue is blocked by a fluorine atom, it appears that 25-hydroxylation of 1 alpha-hydroxylated vitamin D compounds in vivo is not an obligatory requirement for appreciable vitamin D activity.  相似文献   

9.
We synthesized 22-fluorovitamin D3 from (22S) cholest-5-ene-3 beta, 22-diol-3 beta-acetate 2. Compound 2 was treated with diethylaminosulfur trifluoride to give 22-fluorocholest-5-en-3 beta-acetate 3 and (E) 22-dehydrocholest-5-en-3 beta-acetate. Compound 3 was treated with N-bromosuccinimide to give a mixture of the respective 5,7- and 4,6-dienes. The 5,7-diene of 3 was separated from the 4,6-diene using the dienophile 4-phenyl-1,2,4-triazoline-3, 5-dione. 22-Fluoro-5 alpha,8 alpha-(3,5-dioxo-4-phenyl-1, 2,4-triazolino)-cholest-6-en-3 beta-acetate 4 was purified by flash chromatography and treated with lithium aluminum hydride to generate 22-fluorocholesta-5,7-dien-3 beta-ol 5. Photolysis of the diene 5, followed by thermal equilibration, resulted in the synthesis of 22-fluorovitamin D3 7. The vitamin 7 increased active intestinal calcium transport only at a dose of 50,000 pmol/rat, whereas vitamin D3 increased intestinal calcium transport at a dose of between 50 and 500 pmol/rat. 22-Fluorovitamin D3 7 did not mobilize bone and soft tissue calcium at a dose as high as 50,000 pmol/rat, whereas vitamin D3 was successful in doing so at a dose of 500 pmol/rat. When tested in the duodenal organ culture system, 22-fluorovitamin D3 7 had approximately 1/25th the potency of vitamin D3. It did not antagonize the activity of 1,25-dihydroxyvitamin D3. 22-Fluorovitamin D3 7 bound to the rat plasma vitamin D binding protein less avidly than vitamin D3. 22-Fluorovitamin D3 was bound very poorly to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. We conclude that the introduction of fluorine at the C-22 position results in a vitamin D sterol with decreased biologic activity when compared to vitamin D3. The presence of a fluorine group at C-22 position inhibits the binding of the vitamin to rat vitamin D binding protein when compared to the binding of its hydrogen analog, vitamin D3.  相似文献   

10.
The role played by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and/or by calcium on the C-25 hydroxylation of vitamin D3 (D3) was studied in hepatocytes isolated from D-depleted rats which were divided into four treatment groups: Group 1 served as controls, Group 2 received calcium gluconate, Groups 3 and 4 were infused with 1,25(OH)2D3 at 7 and 65 pmol/24 h x 7 days respectively. The treatments normalized serum calcium in all but the controls which remained hypocalcaemic, while serum 1,25(OH)2D3 remained low in Groups 1 and 2 but increased to physiologic and supraphysiologic levels in Groups 3 and 4. The data show that basal D3-25 hydroxylase activities were not significantly affected by any of the treatments. Addition of CaCl2, EGTA, or Quin-2 in vitro revealed that relative to basal values, EGTA strongly inhibited the enzyme activity in all groups (P less than 0.0001), except in G 1; Quin-2 and CaCl2 had no significant effect on the activity of the enzyme in any of the groups. Addition of 1,25(OH)2D3 or A23187 in vitro in the presence of CaCl2 revealed that 1,25(OH)2D3 did not significantly affect enzyme activity, while A23187 was found to stimulate its activity in vitamin D-depleted animals, but most specifically in Group 2 (P less than 0.001); low serum calcium (Group 1) dampened (P less than 0.01), and 1,25(OH)2D3 treatment in vivo totally blunted (P less than 0.001) the response to A23187. The data suggest that 1,25(OH)2D3 supplementation in vivo has per se little or no effect on the basal D3-25 hydroxylase activity. The data show, however, that the magnitude of the response to various challenges in vitro is greatly influenced by the conditioning in vivo of the animals. They also show that A23187 can be a potent stimulator of the enzyme activity, which allowed us to demonstrate a significant reserve for the C-25 hydroxylation of D3 which is well expressed in hepatocytes obtained from D-depleted calcium-supplemented rats.  相似文献   

11.
Active calcium transport in intestine is essential for serum calcium homeostasis as well as for bone formation. It is well recognized that vitamin D is a major, if not sole, stimulator of intestinal calcium transport activity in mammals. Besides vitamin D, endogenous glucose 1-phosphate (G1P) affects calcium transport activity in some microorganisms. In this study, we investigated whether G1P affects intestinal calcium transport activity in mammals as well. Of several glycolytic intermediates, G1P was the sole sugar compound in stimulating intestinal calcium uptake in Caco-2 cells. G1P stimulated net calcium influx and expression of calbindin D9K protein in rat intestine, through an active transport mechanism. Calcium uptake in G1P-supplemented rats was greater than that in the control rats fed a diet containing adequate vitamin D3. Bone mineral density (BMD) of aged rat femoral metaphysis and diaphysis was also increased by feeding the G1P diet. G1P did not affect serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] at all. These results suggest that exogenously applied G1P stimulates active transport of calcium in intestine, independent of vitamin D, leading to an increase of BMD.  相似文献   

12.
This study was conducted to assess the effects of long-term ingestion of moderate excesses of vitamin A on trabecular bone remodeling in the fifth lumbar vertebral body of aged rats. Eighteen-month-old rats were fed diets with vitamin A content equal to the daily requirement (DR), 2-fold, and 5-fold the DR along with calcium content of either the DR or 0.3-fold the DR, for 14 months each. As expected, serum concentrations of 1,25-dihydroxyvitamin D were higher in the reduced than in the normal calcium intake groups (65.1 +/- 2.4 SEM vs 47.8 +/- 2.1 pg/ml, P less than 0.001). Calcium balance was more positive at the higher than the lower calcium intake (5.7 vs 0.9 mg, P less than 0.001) but was unaffected by vitamin A intake. Histomorphometric analysis of the fifth lumbar vertebral body revealed that the 2-fold but not the 5-fold excess in vitamin A intake resulted in a 15% increase in percentage of trabecular bone (P less than 0.02). The low calcium diet depressed bone growth (total bone tissue) but did not affect percentage of trabecular bone. Several effects of the vitamin A excess and low calcium diet were noted along the trabecular surface including increased mineral apposition rate and resorption surfaces and decreased formation surfaces. The net effect of vitamin A on trabecular bone of the rat varies as intake begins to exceed the DR. At a 2-fold excess, a modest favorable effect on percentage of trabecular bone was observed.  相似文献   

13.
A new fluoro analog of 1,25-dihydroxyvitamin D3, i.e., 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3, has been compared with the native hormone, 1,25-dihydroxyvitamin D3, in its biological potency, duration of action, and binding to the vitamin D transport protein and intestinal receptor protein. The fluoro analog is about 5 times more active than the native hormone in healing rickets and elevating serum inorganic phosphorus levels of rachitic rats. It is about 10 times more active than 1,25-dihydroxyvitamin D3 in increasing intestinal calcium transport and bone calcium mobilization of vitamin D-deficient rats fed a low-calcium diet. Furthermore, the higher biopotency is manifested in animals after oral dosing. Of great importance is that the action of the fluoro analog is longer lasting than that of 1,25-dihydroxyvitamin D3. This is especially apparent in the elevation of serum phosphorus and bone mineralization responses. The fluoro analog is only slightly less competent than 1,25-dihydroxyvitamin D3 in binding to the vitamin D transport protein in rat blood, and is one-third as competent as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol receptor for 1,25-dihydroxyvitamin D3. These results suggest that the basis for increased potency of this analog is likely the result of less rapid metabolism.  相似文献   

14.
The possible contribution of catecholamines and vitamin D3 metabolites to the high plasma calcitonin (CT) levels in suckling baby rats is unknown. So, in vivo and in vitro (using a perifusion system) effects of beta-adrenergic agents and vitamin D3 metabolites on CT release were studied in the rat during the postnatal development. In 13-day-old rats, the increase in plasma CT levels induced by isoproterenol injection (0.1 micrograms/kg b.w.) was inhibited by a previous administration of propranolol. A significant decrease in plasma CT levels was observed after propranolol injection in baby rats (0.68 +/- 0.05 ng/ml vs. 0.93 +/- 0.01 ng/ml). A daily injection of 1,25-dihydroxycholecalciferol (1,25-(OH)2D3; 25 pmoles/rat/day during 4 days) induced a marked rise in plasma calcium (16.1 +/- 0.2 mg/dl), and a great decrease in thyroidal CT contents (approximately 70% of control values) in 13-day-old rats while no change was noted with 24,25-dihydroxycholecalciferol (24,25-(OH)2D3). A negative correlation between plasma calcium and thyroidal CT stores was found in suckling and in weaning rats treated with different doses of 1,25-(OH)2D3, suggesting an indirect effect of 1,25-(OH)2D3 on CT secretion. The mobilization of the thyroidal CT content was greater in weaning than in suckling rats in response to a given hypercalcemia. In vitro, 5 X 10(-5) M isoproterenol induced a rapid increase in CT secretion rate while 1,25-(OH)2D3 inhibited the rise in CT release induced by 3.0 mM calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Transplacental movement of calcium from mother to fetus is essential for normal fetal development. In most species, fetal plasma calcium levels are higher than maternal levels at term. The role of cholecalciferol metabolites, with specific emphasis on 1,25-dihydroxycholecalciferol (1,25(OH)2D), in placental calcium transport and maintenance of the fetomaternal gradient has been extensively investigated. In rats, there is not an absolute demand for 1,25(OH)2D for maintenance of fetal calcium homeostasis in utero, even though it is essential for maintenance of maternal plasma calcium levels. However, in sheep, the absence of 1,25(OH)2D results in disruption of both maternal and fetal calcium homeostasis. It is known that rat and human placentas contain specific cytosolic binding proteins for 1,25(OH)2D that are similar to the well-characterized intestinal receptor. Two calcium-binding proteins (CaBP) have been detected in rat and human placentas: a protein immunologically identical to the vitamin D-dependent CaBP and a calcium-dependent ATPase. The levels of CaBP in rat placenta have been shown to increase in response to exogenously administered 1,25(OH)2D but cannot be obliterated with maternal vitamin D deficiency. No relationship has been shown between 1,25(OH)2D and placental Ca-ATPase in any species. Thus, the mechanism of action of 1,25(OH)2D in maintenance of the transplacental calcium gradient in sheep is unknown. In the pregnant rat (and perhaps human), 1,25(OH)2D is a critical factor in the maintenance of sufficient maternal calcium for transport to the fetus and may play a role in normal skeletal development of the neonate.  相似文献   

16.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

17.
We investigated the effects of 1,25-dihydroxyvitamin D(3) [25(OH)(2)D(3)] on tissue plasminogen activator (tPA) secretion from primary cultures of rat heart microvascular cells. After an initial 5-day culture period, cells were treated for 24 h with 1,25(OH)(2)D(3) and several of its analogs. The results showed that 1,25(OH)(2)D(3) induced tPA secretion at 10(-10) to 10(-16) M. A less calcemic analog, Ro-25-8272, and an analog that binds the vitamin D receptor but is ineffective at perturbing Ca(2+) channels, Ro-24-5531, were approximately 10% as active as 1,25(OH)(2)D(3). An analog that binds the vitamin D receptor poorly but is an effective Ca(2+) channel agonist, Ro-24-2287, required approximately 10(-13) M to induce tPA secretion. Combinations of Ro-24-5531 and Ro-24-2287 were approximately as potent as 1,25(OH)(2)D(3). Treatment of the cells with BAY K 8644 or thapsigargin also increased tPA secretion, suggesting that increased cytosolic calcium concentration ([Ca(2+)]) induces tPA secretion. The results suggested that the sensitivity of the tPA secretory response of microvascular cells to 1,25(OH)(2)D(3) was due in part to generation of a vitamin D-depleted state in vitro and in part to synergistic effects of 1,25(OH)(2)D(3) on two different induction pathways of tPA release.  相似文献   

18.
To further understand the molecular mechanism by which 1,25(OH)2-vitamin D3 [1,25(OH2D3] rapidly stimulates intestinal calcium transport (termed "transcaltachia"), the effect of the calcium channel agonist BAY K8644 was studied in vascularly perfused duodenal loops from normal, vitamin D-replete chicks. BAY K8644, 2 mu M, was found to stimulate 45Ca2+ transport from the lumen to the vascular effluent to the same extent as physiological levels of 1,25(OH)2D3. The sterol and the Ca2+ channel agonist both increased 45Ca2+ transport 70% above control values within 2 min and 200% after 30 min of vascular perfusion. The effect of the Ca2+ channel agonist was dose dependent. Also, 1,25(OH)2D3-enhanced transcaltachia was abolished by the calcium channel blocker nifedipine. Collectively, these results suggest the involvement of 1,25(OH)2D3 in the activation of basal lateral membrane Ca2+ channels as an early effect in the transcaltachic response.  相似文献   

19.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
24R,24,25-Dihydroxyvitamin D3 is capable of inducing a minimal intestinal calcium transport response in chicks when compared to an equal amount of 25-hydroxyvitamin D3. 1,24,25-Trihydroxyvitamin D3 is also less active than 1,25-dihydroxyvitamin D3, and its activity is much shorter lived than that of 1,25-dihydroxyvitamin D3. A comparison of the metabolism of 25-hydroxy[26,27-3H]vitamin D3 and 24,25-dihydroxy[26,27-3H]vitamin D3 in the rat and chick shows that 24,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3 disappear at least 10 times more rapidly from the blood and intestine of chicks. Furthermore, examination of the excretory products from both of these species demonstrates that chicks receiving a single dose of 24,25-dihydroxy[26,27-3H]vitamin D3 excrete 66% of the total radioactivity by 48 hours, whereas rats receiving the same dose excrete less than one-half that amount. These results demonstrate that 24,25-dihydroxyvitamin D3 is considerably less biologically active in the chick than in the rat, probably due to more rapid metabolism and excretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号