首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MRP1 couples ATP binding/hydrolysis to solute transport. We have shown that ATP binding to nucleotide-binding-domain 1 (NBD1) plays a regulatory role whereas ATP hydrolysis at NBD2 plays a crucial role in ATP-dependent solute transport. However, how ATP is hydrolyzed at NBD2 is not well elucidated. To partially address this question, we have mutated the histidine residue in H-loop of MRP1 to either a residue that prevents the formation of hydrogen-bonds with ATP and other residues in MRP1 or a residue that may potentially form these hydrogen-bonds. Interestingly, substitution of H827 in NBD1 with residues that prevented formation of these hydrogen-bonds had no effect on the ATP-dependent solute transport whereas corresponding mutations in NBD2 almost abolished the ATP-dependent solute transport completely. In contrast, substitutions of H1486 in H-loop of NBD2 with residues that might potentially form these hydrogen-bonds exerted either full function or partial function, implying that hydrogen-bond formation between the residue at 1486 and the γ-phosphate of the bound ATP and/or other residues, such as putative catalytic base E1455, together with S769, G771, T1329 and K1333, etc., holds all the components necessary for ATP binding/hydrolysis firmly so that the activated water molecule can efficiently hydrolyze the bound ATP at NBD2.  相似文献   

2.
Nucleotide dissociation from NBD1 promotes solute transport by MRP1   总被引:7,自引:0,他引:7  
MRP1 transports glutathione-S-conjugated solutes in an ATP-dependent manner by utilizing its two NBDs to bind and hydrolyze ATP. We have found that ATP binding to NBD1 plays a regulatory role whereas ATP hydrolysis at NBD2 plays a dominant role in ATP-dependent LTC4 transport. However, whether ATP hydrolysis at NBD1 is required for the transport was not clear. We now report that ATP hydrolysis at NBD1 may not be essential for transport, but that the dissociation of the NBD1-bound nucleotide facilitates ATP-dependent LTC4 transport. These conclusions are supported by the following results. The substitution of the putative catalytic E1455 with a non-acidic residue in NBD2 greatly decreases the ATPase activity of NBD2 and the ATP-dependent LTC4 transport, indicating that E1455 participates in ATP hydrolysis. The mutation of the corresponding D793 residue in NBD1 to a different acidic residue has little effect on ATP-dependent LTC4 transport. The replacement of D793 with a non-acidic residue, such as D793L or D793N, increases the rate of ATP-dependent LTC4 transport. Along with their higher transport activities, their Michaelis constant Kms (ATP) are also higher than that of wild-type. Coincident with their higher Kms (ATP), their Kds derived from ATP binding are also higher than that of wild-type, implying that the rate of dissociation of the bound nucleotide from the mutated NBD1 is faster than that of wild-type. Therefore, regardless of whether the bound ATP at NBD1 is hydrolyzed or not, the release of the bound nucleotide from NBD1 may bring the molecule back to its original conformation and facilitate the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

3.
MRP1 transports glutathione-S-conjugated solutes in an ATP-dependent manner by utilizing its two NBDs to bind and hydrolyze ATP. We have found that ATP binding to NBD1 plays a regulatory role whereas ATP hydrolysis at NBD2 plays a dominant role in ATP-dependent LTC4 transport. However, whether ATP hydrolysis at NBD1 is required for the transport was not clear. We now report that ATP hydrolysis at NBD1 may not be essential for transport, but that the dissociation of the NBD1-bound nucleotide facilitates ATP-dependent LTC4 transport. These conclusions are supported by the following results. The substitution of the putative catalytic E1455 with a non-acidic residue in NBD2 greatly decreases the ATPase activity of NBD2 and the ATP-dependent LTC4 transport, indicating that E1455 participates in ATP hydrolysis. The mutation of the corresponding D793 residue in NBD1 to a different acidic residue has little effect on ATP-dependent LTC4 transport. The replacement of D793 with a non-acidic residue, such as D793L or D793N, increases the rate of ATP-dependent LTC4 transport. Along with their higher transport activities, their Michaelis constant Kms (ATP) are also higher than that of wild-type. Coincident with their higher Kms (ATP), their Kds derived from ATP binding are also higher than that of wild-type, implying that the rate of dissociation of the bound nucleotide from the mutated NBD1 is faster than that of wild-type. Therefore, regardless of whether the bound ATP at NBD1 is hydrolyzed or not, the release of the bound nucleotide from NBD1 may bring the molecule back to its original conformation and facilitate the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

4.
Yang R  Scavetta R  Chang XB 《Biochemistry》2008,47(32):8456-8464
Structural analysis of human MRP1-NBD1 revealed that the Walker A S685 forms a hydrogen bond with the Walker B D792 and interacts with the Mg (2+) cofactor and the beta-phosphate of the bound Mg.ATP. We have found that substitution of the S685 with an amino acid that potentially prevents the formation of the hydrogen bond resulted in misfolding of the protein and significantly affect the ATP-dependent leukotriene C4 (LTC4) transport. In this report we tested whether the corresponding substitution in NBD2 would also result in misfolding of the protein. In contrast to the NBD1 mutations, none of the mutations in NBD2, including S1334A, S1334C, S1334D, S1334H, S1334N, and S1334T, caused misfolding of the protein. However, elimination of the hydroxyl group at S1334 in mutations including S1334A, S1334C, S1334D, S1334H, and S1334N drastically reduced the ATP binding and the ATP-enhanced ADP trapping at the mutated NBD2. Due to this low efficient ATP binding at the mutated NBD2, the inhibitory effect of ATP on the LTC4 binding is significantly decreased. Furthermore, ATP bound to the mutated NBD2 cannot be efficiently hydrolyzed, leading to almost completely abolishing the ATP-dependent LTC4 transport. In contrast, S1334T mutation, which retained the hydroxyl group at this position, exerts higher LTC4 transport activity than the wild-type MRP1, indicating that the hydroxyl group at this position plays a crucial role for ATP binding/hydrolysis and ATP-dependent solute transport.  相似文献   

5.
MRP1 (multidrug resistance protein 1) couples ATP binding/hydrolysis at its two non-equivalent NBDs (nucleotide-binding domains) with solute transport. Some of the NBD1 mutants, such as W653C, decreased affinity for ATP at the mutated site, but increased the rate of ATP-dependent solute transport. In contrast, other NBD1 mutants, such as K684L, had decreased ATP binding and rate of solute transport. We now report that mutations of the Walker A lysine residue, K684L and K1333L, significantly alter the tertiary structure of the protein. Due to elimination of the positively charged group and conformational alterations, the K684L mutation greatly decreases the affinity for ATP at the mutated NBD1 and affects ATP binding at the unmutated NBD2. Although K684L-mutated NBD1 can bind ATP at higher concentrations, the bound nucleotide at that site is not efficiently hydrolysed. All these alterations result in decreased ATP-dependent solute transport to approx. 40% of the wild-type. In contrast, the K1333L mutation affects ATP binding and hydrolysis at the mutated NBD2 only, leading to decreased ATP-dependent solute transport to approx. 11% of the wild-type. Consistent with their relative transport activities, the amount of vincristine accumulated in cells is in the order of K1333L> or =CFTR (cystic fibrosis transmembrane conductance regulator)>K684L>wild-type MRP1. Although these mutants retain partial solute transport activities, the cells expressing them are not multidrug-resistant owing to inefficient export of the anticancer drugs by these mutants. This indicates that even partial inhibition of transport activity of MRP1 can reverse the multidrug resistance caused by this drug transporter.  相似文献   

6.
Structural analyses of several bacterial ATP-binding cassette (ABC) transporters indicate that an aromatic amino acid residue in a nucleotide-binding domain (NBD) interacts with the adenine ring of the bound ATP and contributes to the ATP binding. Substitution of this aromatic residue with a polar serine residue in bacterial histidine transporter completely abolished both ATP binding and ATP-dependent histidine transport. However, substitution of the aromatic amino acid residue in the human cystic fibrosis transmembrane conductance regulator with a polar cysteine residue did not have any effect on the ATP-dependent chloride channel function of the protein. To determine whether the other eucaryotic ABC transporters use the strategy analogous to that in some bacterial ABC transporters, the aromatic Trp653 residue in NBD1 and the Tyr1302 residue in NBD2 of human multidrug resistance-associated protein 1 (MRP1) was mutated to either a different aromatic residue or a polar cysteine residue. Substitution of the aromatic residue with a different aromatic amino acid, such as W653Y or Y1302W, did not affect ATP-dependent leukotriene C4 (LTC4) transport. In contrast, substitution of the aromatic residue with a polar cysteine residue, such as W653C or Y1302C, decreased the affinity for ATP, resulting in greatly increased Kd values for ATP binding or Km values for ATP in ATP-dependent LTC4 transport. Interestingly, although substitution of the aromatic Trp653 in NBD1 of MRP1 with a polar cysteine residue greatly decreases the affinity for ATP, the ATP-dependent LTC4 transport activities are much higher than that of wild-type MRP1, supporting our hypothesis that the increased release rate of the bound ATP from the mutated NBD1 facilitates the protein to start a new cycle of ATP-dependent solute transport.  相似文献   

7.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. The two NBDs possess different properties (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) and may play different roles during solute transport. We now report that NBD1 has moderately higher affinity for ATP than NBD2. The consequence of this difference is that the overall Kd value for wild-type MRP1 is mainly determined by ATP binding at NBD1. This conclusion is supported by the following: 1) mutation of the cysteine residue at 682 to alanine (C682A) in Walker A motif in NBD1 decreases the Kd value, indicating increased affinity for ATP; 2) mutation of the alanine residue at 1331 to cysteine (A1331C) in the Walker A motif of NBD2 does not have an effect on the Kd value; and 3) photolabeling of the protein with a cysteine residue in the Walker A motif of NBD1 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD2. In contrast, the Km for ATP in support of LTC4 transport is mainly determined by ATP hydrolysis at NBD2. This conclusion is supported by the following: 1) although mutation of A1331C does not have an effect on the Kd value, the Km values measured from LTC4 transport by proteins with this mutation in NBD2 are much higher than the proteins with wild-type NBD2, implying that the A1331C mutation affects ATP binding/hydrolysis at NBD2; and 2) ATP-dependent LTC4 transport by the protein with a cysteine residue in the Walker A motif of NBD2 is much more sensitive to N-ethylmaleimide modification than the protein with a cysteine residue in the Walker A motif of NBD1. Our previous results indicated that ATP binding at NBD1 at low concentration enhanced ATP binding/hydrolysis at NBD2. All of these results support the notion that ATP binding at NBD1 at low concentration plays a more important regulatory role than the binding at high ATP concentration and that ATP hydrolysis at NBD2 plays a dominant role in the ATP-dependent LTC4 transport.  相似文献   

8.
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the beta-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 degrees C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the beta-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.  相似文献   

9.
Structural analysis of MRP1-NBD1 revealed that the Walker A S685 forms hydrogen-bond with the Walker B D792 and interacts with magnesium and the β-phosphate of the bound ATP. We have found that substitution of the D792 with leucine resulted in misfolding of the protein. In this report we tested whether substitution of the S685 with residues that prevent formation of this hydrogen-bond would also cause misfolding. Indeed, substitution of the S685 with residues potentially preventing formation of this hydrogen-bond resulted in misfolding of the protein. In addition, some substitutions that might form hydrogen-bond with D792 also yielded immature protein. All these mutants are temperature-sensitive variants. However, these complex-glycosylated mature mutants prepared from the cells grown at 27 °C still significantly affect ATP binding and ATP-dependent solute transport. In contrast, substitution of the S685 with threonine yielded complex-glycosylated mature protein that is more active than the wild-type MRP1, indicating that the interaction between the hydroxyl group of 685 residue and the carboxyl group of D792 plays a crucial role for the protein folding and the interactions of the hydroxyl group at 685 with magnesium and the β-phosphate of the bound ATP play an important role for ATP-binding and ATP-dependent solute transport.  相似文献   

10.
Multidrug resistance protein (MRP1) utilizes two non-equivalent nucleotide-binding domains (NBDs) to bind and hydrolyze ATP. ATP hydrolysis by either one or both NBDs is essential to drive transport of solute. Mutations of either NBD1 or NBD2 reduce solute transport, but do not abolish it completely. How events at these two domains are coordinated during the transport cycle have not been fully elucidated. Earlier reports (Gao, M., Cui, H. R., Loe, D. W., Grant, C. E., Almquist, K. C., Cole, S. P., and Deeley, R. G. (2000) J. Biol. Chem. 275, 13098-13108; Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2000) J. Biol. Chem. 275, 20280-20287) indicate that intact ATP is observed bound at NBD1, whereas trapping of the ATP hydrolysis product, ADP, occurs predominantly at NBD2 and that trapping of ADP at NBD2 enhances ATP binding at NBD1 severalfold. This suggested transmission of a positive allosteric interaction from NBD2 to NBD1. To assess whether ATP binding at NBD1 can enhance the trapping of ADP at NBD2, photoaffinity labeling experiments with [alpha-(32)P]8-N(3)ADP were performed and revealed that when presented with this compound labeling of MRP1 occurred at both NBDs. However, upon addition of ATP, this labeling was enhanced 4-fold mainly at NBD2. Furthermore, the nonhydrolyzable ATP analogue, 5'-adenylylimidodiphosphate (AMP-PNP), bound preferentially to NBD1, but upon addition of a low concentration of 8-N(3)ATP, the binding at NBD2 increased severalfold. This suggested that the positive allosteric stimulation from NBD1 actually involves an increase in ATP binding at NBD2 and hydrolysis there leading to the trapping of ADP. Mutations of Walker A or B motifs in either NBD greatly reduced their ability to be labeled by [alpha-(32)P]8-N(3)ADP as well as by either [alpha-(32)P]- or [gamma-(32)P]8-N(3)ATP (Hou et al. (2000), see above). These mutations also strongly diminished the enhancement by ATP of [alpha-(32)P]8-N(3)ADP labeling and the transport activity of the protein. Taken together, these results demonstrate directly that events at NBD1 positively influence those at NBD2. The interactions between the two asymmetric NBDs of MRP1 protein may enhance the catalytic efficiency of the MRP1 protein and hence of its ATP-dependent transport of conjugated anions out of cells.  相似文献   

11.
Structural analyses of bacterial ATP-binding-cassette transporters revealed that the glutamine residue in Q-loop plays roles in interacting with: 1) a metal cofactor to participate in ATP binding; 2) a putative catalytic water molecule to participate in ATP hydrolysis; 3) other residues to transmit the conformational changes between nucleotide-binding-domains and transmembrane-domains, in ATP-dependent solute transport. We have mutated the glutamines at 713 and 1375 to asparagine, methionine or leucine to determine the functional roles of these residues in Q-loops of MRP1. All these single mutants significantly decreased Mg·ATP binding and increased the K(m) (Mg·ATP) and V(max) values in Mg·ATP-dependent leukotriene-C4 transport. However, the V(max) values of the double mutants Q713N/Q1375N, Q713M/Q1375M and Q713L/Q1375L were lower than that of wtMRP1, implying that the double mutants cannot efficiently bind Mg·ATP. Interestingly, MRP1 has higher affinity for Mn·ATP than for Mg·ATP and the Mn·ATP-dependent leukotriene-C4 transport activities of Q713N/Q1375N and Q713M/Q1375M are significantly higher than that of wtMRP1. All these results suggest that: 1) the glutamine residues in Q-loops contribute to ATP-binding via interaction with a metal cofactor; 2) it is most unlikely that these glutamine residues would play crucial roles in ATP hydrolysis and in transmitting the conformational changes between nucleotide-binding-domains and transmembrane-domains.  相似文献   

12.
Membrane transporters of the adenine nucleotide binding cassette (ABC) superfamily utilize two either identical or homologous nucleotide binding domains (NBDs). Although the hydrolysis of ATP by these domains is believed to drive transport of solute, it is unknown why two rather than a single NBD is required. In the well studied P-glycoprotein multidrug transporter, the two appear to be functionally equivalent, and a strongly supported model proposes that ATP hydrolysis occurs alternately at each NBD (Senior, A. E., al-Shawi, M. K., and Urbatsch, I. L. (1995) FEBS Lett 377, 285-289). To assess how applicable this model may be to other ABC transporters, we have examined adenine nucleotide interactions with the multidrug resistance protein, MRP1, a member of a different ABC family that transports conjugated organic anions and in which sequences of the two NBDs are much less similar than in P-glycoprotein. Photoaffinity labeling experiments with 8-azido-ATP, which strongly supports transport revealed ATP binding exclusively at NBD1 and ADP trapping predominantly at NBD2. Despite this apparent asymmetry in the two domains, they are entirely interdependent as substitution of key lysine residues in the Walker A motif of either impaired both ATP binding and ADP trapping. Furthermore, the interaction of ADP at NBD2 appears to allosterically enhance the binding of ATP at NBD1. Glutathione, which supports drug transport by the protein, does not enhance ATP binding but stimulates the trapping of ADP. Thus MRP1 may employ a more complex mechanism of coupling ATP utilization to the export of agents from cells than P-glycoprotein.  相似文献   

13.
Multidrug resistance-associated protein (MRP1) transports solutes in an ATP-dependent manner by utilizing its two nonequivalent nucleotide binding domains (NBDs) to bind and hydrolyze ATP. We found that ATP binding to the first NBD of MRP1 increases binding and trapping of ADP at the second domain (Hou, Y., Cui, L., Riordan, J. R., and Chang, X. (2002) J. Biol. Chem. 277, 5110-5119). These results were interpreted as indicating that the binding of ATP at NBD1 causes a conformational change in the molecule and increases the affinity for ATP at NBD2. However, we did not distinguish between the possibilities that the enhancement of ADP trapping might be caused by either ATP binding alone or hydrolysis. We now report the following. 1) ATP has a much lesser effect at 0 degrees C than at 37 degrees C. 2) After hexokinase treatment, the nonhydrolyzable ATP analogue, adenyl 5'-(yl iminodiphosphate), does not enhance ADP trapping. 3) Another nonhydrolyzable ATP analogue, adenosine 5'-(beta,gamma-methylene)triphosphate, whether hexokinase-treated or not, causes a slight enhancement. 4) In contrast, the hexokinase-treated poorly hydrolyzable ATP analogue, adenosine 5'-O-(thiotriphosphate) (ATPgammaS), enhances ADP trapping to a similar extent as ATP under conditions in which ATPgammaS should not be hydrolyzed. We conclude that: 1) ATP hydrolysis is not required to enhance ADP trapping by MRP1 protein; 2) with nucleotides having appropriate structure such as ATP or ATPgammaS, binding alone can enhance ADP trapping by MRP1; 3) the stimulatory effect on ADP trapping is greatly diminished when the MRP1 protein is in a "frozen state" (0 degrees C); and 4) the steric structure of the nucleotide gamma-phosphate is crucial in determining whether binding of the nucleotide to NBD1 of MRP1 protein can induce the conformational change that influences nucleotide trapping at NBD2.  相似文献   

14.
CFTR (cystic fibrosis transmembrane conductance regulator), a member of the ABC (ATP-binding cassette) superfamily of membrane proteins, possesses two NBDs (nucleotide-binding domains) in addition to two MSDs (membrane spanning domains) and the regulatory 'R' domain. The two NBDs of CFTR have been modelled as a heterodimer, stabilized by ATP binding at two sites in the NBD interface. It has been suggested that ATP hydrolysis occurs at only one of these sites as the putative catalytic base is only conserved in NBD2 of CFTR (Glu1371), but not in NBD1 where the corresponding residue is a serine, Ser573. Previously, we showed that fragments of CFTR corresponding to NBD1 and NBD2 can be purified and co-reconstituted to form a heterodimer capable of ATPase activity. In the present study, we show that the two NBD fragments form a complex in vivo, supporting the utility of this model system to evaluate the role of Glu1371 in ATP binding and hydrolysis. The present studies revealed that a mutant NBD2 (E1371Q) retains wild-type nucleotide binding affinity of NBD2. On the other hand, this substitution abolished the ATPase activity formed by the co-purified complex. Interestingly, introduction of a glutamate residue in place of the non-conserved Ser573 in NBD1 did not confer additional ATPase activity by the heterodimer, implicating a vital role for multiple residues in formation of the catalytic site. These findings provide the first biochemical evidence suggesting that the Walker B residue: Glu1371, plays a primary role in the ATPase activity conferred by the NBD1-NBD2 heterodimer.  相似文献   

15.
MRP1 belongs to subfamily "C" of the ABC transporter superfamily. The nucleotide-binding domains (NBDs) of the C family members are relatively divergent compared with many ABC proteins. They also differ in their ability to bind and hydrolyze ATP. In MRP1, NBD1 binds ATP with high affinity, whereas NBD2 is hydrolytically more active. Furthermore, ATP binding and/or hydrolysis by NBD2 of MRP1, but not NBD1, is required for MRP1 to shift from a high to low affinity substrate binding state. Little is known of the structural basis for these functional differences. One minor structural difference between NBDs is the presence of Asp COOH-terminal to the conserved core Walker B motif in NBD1, rather than the more commonly found Glu present in NBD2. We show that the presence of Asp or Glu following the Walker B motif profoundly affects the ability of the NBDs to bind, hydrolyze, and release nucleotide. An Asp to Glu mutation in NBD1 enhances its hydrolytic capacity and affinity for ADP but markedly decreases transport activity. In contrast, mutations that eliminate the negative charge of the Asp side chain have little effect. The decrease in transport caused by the Asp to Glu mutation in NBD1 is associated with an inability of MRP1 to shift from high to low affinity substrate binding states. In contrast, mutation of Glu to Asp markedly increases the affinity of NBD2 for ATP while decreasing its ability to hydrolyze ATP and to release ADP. This mutation eliminates transport activity but potentiates the conversion from a high to low affinity binding state in the presence of nucleotide. These observations are discussed in the context of catalytic models proposed for MRP1 and other ABC drug transport proteins.  相似文献   

16.
Human multidrug resistance protein 1 (MRP1) is a membrane protein that belongs to the ATP-binding cassette (ABC) superfamily of transport proteins. MRP1 contributes to chemotherapy failure by exporting a wide range of anti-cancer drugs when over expressed in the plasma membrane of cells. Here, we report the first high-resolution crystal structure of human MRP1-NBD1. Drug efflux requires energy resulting from hydrolysis of ATP by nucleotide binding domains (NBDs). Contrary to the prokaryotic NBDs, the extremely low intrinsic ATPase activity of isolated MRP1-NBDs allowed us to obtain the structure of wild-type NBD1 in complex with Mg2+/ATP. The structure shows that MRP1-NBD1 adopts a canonical fold, but reveals an unexpected non-productive conformation of the catalytic site, providing an explanation for the low intrinsic ATPase activity of NBD1 and new hypotheses on the cooperativity of ATPase activity between NBD1 and NBD2 upon heterodimer formation.  相似文献   

17.
ATP-binding cassette (ABC) transporters couple the binding and hydrolysis of ATP to the translocation of solutes across biological membranes. The so-called "Walker motifs" in each of the nucleotide binding domains (NBDs) of these proteins contribute directly to the binding and the catalytic site for the MgATP substrate. Hence mutagenesis of residues in these motifs may interfere with function. This is the case with the MRP1 multidrug transporter. However, interpretation of the effect of mutation in the Walker B motif of NBD1 (D792L/D793L) was confused by the fact that it prevented biosynthetic maturation of the protein. We have determined now that this latter effect is entirely due to the D792L substitution. This variant is unable to mature conformationally as evidenced by its remaining more sensitive to trypsin digestion in vitro than the mature wild-type protein. In vivo, the core-glycosylated form of that mutant is retained in the endoplasmic reticulum and degraded by the proteasome. A different substitution of the same residue (D792A) had a less severe effect enabling accumulation of approximately equal amounts of mature and immature MRP1 proteins in the membrane vesicles but still resulted in defective nucleotide interaction and organic anion transport, indicating that nucleotide hydrolysis at NBD1 is essential to MRP1 function.  相似文献   

18.
ATP-binding cassette transporters ABCG5 (G5) and ABCG8 (G8) form a heterodimer that transports cholesterol and plant sterols from hepatocytes into bile. Mutations that inactivate G5 or G8 cause hypercholesterolemia and premature atherosclerosis. We showed previously that the two nucleotide-binding domains (NBDs) in the heterodimer are not functionally equivalent; sterol transport is abolished by mutations in the consensus residues of NBD2 but not of NBD1. Here, we examined the structural requirements of NBD1 for sterol transport. Substitutions of the D-loop aspartate and Q-loop glutamine in either NBD did not impair sterol transport. The H-loop histidine of NBD2 (but not NBD1) was required for sterol transport. Exchange of the signature motifs between the NBDs did not interfere with sterol transport, whereas swapping the Walker A, Walker B, and signature motifs together resulted in failure to transport sterols. Selected substitutions within NBD1 altered substrate specificity: transport of plant sterols by the heterodimer was preserved, whereas transport of cholesterol was abolished. In summary, these data indicate that NBD1, although not required for ATP hydrolysis, is essential for normal function of G5G8 in sterol transport. Both the position and structural integrity of NBD2 are essential for sterol transport activity.  相似文献   

19.
The multidrug resistance proteins P-glycoprotein (Pgp) and MRP1 are drug-efflux pumps. In this study, we compared the nucleotide triphosphatase activities of the isolated N-terminal nucleotide binding domains (NBD1) of Pgp and MRP1, and explored the potential role of the phosphorylation target domain of Pgp on the regulation of Pgp NBD1 ATPase activity. We found that: (1) the NBD1s of Pgp and MRP1 have ATPase and GTPase activities, (2) the K(m)s of Pgp NBD1 for ATP and GTP hydrolysis are identical, while the K(m) of MRP1 NBD1 for ATP is lower than that for GTP, and (3) phosphorylation of MLD by PKA or PKC produces a marginal increase of V(max) for ATP hydrolysis, without affecting the affinity for ATP. These results show efficient GTP hydrolysis by the NBD1s of Pgp and MRP1, and a minor role of phosphorylation in the control of Pgp NBD1 ATPase activity.  相似文献   

20.
Multidrug-resistance-associated protein 6 (MRP6/ABCC6) belongs to the ABC transporter family, whose members share many characteristic features including membrane domains and two nucleotide-binding domains (NBD1 and NBD2). These function cooperatively to bind and hydrolyze ATP for the transport of substrates across biological membranes. In this study, MRP6-NBD2 (residues 1252–1503) was expressed in Escherichia coli, purified and structurally and functionally characterized. CD spectra suggested that the protein is folded. Furthermore, NBD2 is shown to be biologically active as it binds ATP and presents ATPase activity although significantly lower compared with isolated NBD1. The mixture of NBD2 and NBD1 exhibited an activity similar to the NBD2 alone, indicating that NBD1 and NBD2 form a heterodimer with the latter limiting ATP hydrolysis. These findings suggest that NBD1 has a higher tendency to form an active homodimer, which is also supported by in silico analysis of energy-minimized dimers of the homology models of the two domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号