首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Rat cell lines tranformed by viral DNA fragments, EcoRI-C and HindIII-G, of adenovirus type 12 DNA were analyzed for the viral transforming DNA sequences present in cell DNAs. Cell lines transformed by the EcoRI-C fragment of adenovirus type 12 DNA (leftmost 16.5% of the viral genome) contain most of the HindIII-G sequences of the HindIII-G fragment, but at a different frequency depending on the portions of the fragment. The sequence of the AccI-H fragment of adenovirus type 12 DNA (the left part of the HindIII-G; leftmost 4.5% of the viral genome) was detected dominantly in cells transformed by the HindIII-G fragment Southern blot analysis showed that viral DNA sequences are present at multiple integration sites in high-molecular-weight cell DNA from cells transformed by the EcoRI-C or HindIII-G fragment of adenovirus type 12 DNA. These results suggest that most of the HindIII-G sequences in cells transformed by the HindIII-G fragment are present as fragmented forms.  相似文献   

2.
3.
Recombinants between an adenovirus type 5 (Ad5) deletion mutant and the Ad12 DNA fragment containing early region 1 (E1) were isolated from cells cotransfected with the EcoRI-C fragment of Ad12 DNA and Ad5 dl312 (deletion in E1A) DNA (rcA) and from cells cotransfected with the SalI-C fragment of Ad12 DNA and Ad5 dl312 DNA (rcB). No recombinant was isolated from cells cotransfected with Ad5 dl313 (deletion in E1B) DNA and restriction fragments of Ad12 DNA. Both rcA and rcB are defective and able to replicate in human embryo kidney (HEK) and KB cells with complementation by dl312. Both rcA and rcB formed Ad12 T antigen g, but not T antigen f, in infected HEK and KB cells. In rcA- and rcB-infected cells, Ad5 E1B and Ad12 E1A genes are transcribed. Heteroduplex and size analyses of rcA-1 or rcB-1 DNA fragments hybridized with Ad12 DNA revealed that rcA-1 DNA has a deletion between 5 and 15 map units with an insertion of a portion of Ad12 DNA (10%) and that rcB-1 DNA has a deletion between 70 and 80 map units with an insertion of a portion of Ad12 DNA (10%). The transformed cell lines, RCAY and RCBY, were established after infection of rat 3Y1 cells with rcA and rcB, respectively. Both Ad5 and Ad12 DNA sequences are contained in these cells. In RCAY cells, Ad12 T antigen g is detected, but Ad12 T antigen f is not. In RCBY cells, both Ad12 T antigen g and f are detected. Only the Ad12 E1A gene is transcribed in RCAY cells, whereas Ad5 E1B, Ad12 E1A, and Ad12 E1B genes are transcribed in RCBY cells. In soft-agar cultures, RCBY cells form large colonies, whereas RCAY cells form only tiny colonies. RCBY cells form tumors as efficiently as 12WY cells in transplanted rats. RCAY cells formed tumors inefficiently. Ad5-transformed 5WY cells do not form tumors. These observations indicate that the efficient tumor formation by RCBY cells is dependent on the expression of the Ad12 E1A and E1B genes, whereas the inefficient tumor formation by RCAY cells is due to the expression of only the Ad12 E1A gene.  相似文献   

4.
Four transformed cell lines were established from cultures of human embryo kidney (HEK) cells microinjected or transfected with cloned adenovirus 12 (Ad12) EcoRI-C DNA (0 through 16.5 map units of the left-hand end of the viral genome). Each cell line showed a different growth pattern. Southern blotting demonstrated that all of the cell lines contained Ad12-specific DNA sequences, but in the microinjected isolates these were at a much lower copy number than in the transfected isolate. Two cell lines (Ad12 HEK 1 and 3) appeared to contain tandemly repeated Ad12 EcoRI-C DNA fragments. Immunoprecipitation and Western blotting confirmed that Ad12 early region 1 (E1) proteins were being expressed by all four of the transformed cell lines, but indicated that E1A polypeptide expression was considerably less than E1B polypeptide expression. All of the Ad12-transformed HEK cell lines were tumorigenic when inoculated intracranially into athymic nude mice.  相似文献   

5.
We have established a library of hamster cells transformed by adenovirus 5 DNA fragments comprising all (XhoI-C, 0 to 16 map units) or only a part (HindIII-G, 0 to 7.8 map units) of early region 1 (E1: 0 to 11.2 map units). These lines have been analyzed in terms of content of viral DNA, expression of E1 antigens, and capacity to induce tumors in hamsters. All cells tested were found to express up to eight proteins encoded within E1A (0 to 4.5 map units) with apparent molecular weights between 52,000 (52K) and 25K. Both G and C fragment-transformed lines expressed a 19K antigen encoded within E1B (4.5 to 11.2 map units), whereas an E1B 58K protein was detected in C fragment-transformed, but not G-fragment-transformed, lines. No clear distinction could be drawn between cells transformed by HindIII-G and by XhoI-C in terms of morphology or tumorigenicity, suggesting that the E1B 58K antigen plays no major role in the maintenance of oncogenic transformation, although possible involvement of truncated forms of 58K cannot be ruled out. Sera were collected from tumor-bearing animals and examined for ability to immunoprecipitate proteins from infected cells. The relative avidity of sera for different proteins was characteristic of the cell line used for tumor induction, and the specificity generally reflected the array of viral proteins expressed by the corresponding transformed cells. However, one notable observation was that even though all transformed lines examined expressed antigens encoded by both the 1.1- and 0.9-kilobase mRNAs transcribed from E1A, tumor sera made against these lines only precipitated products of the 1.1-kilobase message. Thus, two families of E1A proteins, highly related in terms of primary amino acid sequence, appear to be immunologically quite distinct.  相似文献   

6.
We developed a new diagnostic method of subgenus (Sub) B adenovirus (Ad) in clinical samples using non-nested polymerase chain reaction (PCR). Sequences of the conserved hexon-coding region of representative strains of eight serotypes (3, 7, 11, 14, 16, 21, 34 and 35) of Sub B Ad were heterogeneous. In order to distinguish Ad serotype 3 (Ad 3) and Ad 7 from the other serotypes of Sub B Ad, and to differentiate Ad 3 and 7 from each other, 3 different downstream primers were designed based on the sequence heterogeneity. By a single-tube PCR method using a combination of 6 primers including the 3 new primers, Ads demonstrated to amplify 188, 206, 284, and 301 bp DNA fragments for Ad 3, Ad 7, other Sub B Ads, and non-Sub B Ads, respectively. A total of 114 clinical samples were selected to evaluate the direct applicability of our PCR. The results were compared with previous culture results. Sixty-seven out of 71 (94%) Sub B Ad culture-positive samples, and 15 out of 19 (79%) Sub C or E-positive samples amplified products of the expected size. Two of 20 (10%) culture-negative samples from pharyngoconjunctival fever patients were identified as Ad 3 by the PCR. Four samples, from which non-Ad viruses were isolated, were negative by the PCR. The present study might provide a rapid and sensitive diagnosis method for infections caused by Sub B Ads.  相似文献   

7.
A DNA segment carrying viral DNA was cloned from a rat cell line transformed by the cloned EcoRI-C fragment (0 to 16.4 map units) of human adenovirus type 12(Ad12), and the viral sequence in the clone was analysed. The cloned segment contained the region from nucleotide positions 118 to 3520 of the Ad12 genome in the middle. No unique structure was found at the viral and non-viral DNA junctions. When examined the transforming activity, the conserved viral sequence was able to transform rat 3Y1 cells efficiently. Southern blotting analysis of the viral sequence in five re-transformed cell lines showed that the viral sequence was inserted at different sites of cellular DNA. These results indicate that (I) the Ad12 DNA moiety from the enhancer-promoter region of the E1A gene to the end of the E1B gene contains enough information for efficient transformation of the rat cell, and (II) integration of the viral sequence at unique cellular sites is not prerequisite for transformation.  相似文献   

8.
The adenovirus type 12 (Ad12) early region 1 (E1) gene was introduced into KB cells by using a dominant selection vector, pSV2-gpt, and over 80 Gpt+ KB cell clones were established. Three types of recombinant DNAs (gAE1A, gARC, and gABA) were constructed. They contained the AccI-H, EcoRI-C, and BamHI-A fragments, respectively, of Ad12 DNA in pSV2-gpt. Five of 50 (10%) gABA-transformed cell clones, 12 of 18 (67%) gAE1A-transformed cell clones, and 10 of 18 (56%) gARC-transformed cell clones complemented the growth of Ad5 dl312 (deletion in E1A) and were designated as Gpt+ Ad+ cell clones. In these cell clones at their early passages, recombinant genome sequences were detected in cellular DNA and were expressed. T antigen g (the E1A gene product) was detected by immunofluorescence. The Gpt+ Ad+ cell clones supported the growth of Ad5 deletion mutants in parallel with the expression of Ad12 E1A or E1A plus E1B genes. After infection of Gpt+ Ad+ cell clones with Ad5 dl312, the early genes of dl312 were efficiently transcribed, indicating the expression of the pre-early function of the Ad12 E1A gene. Two clones each from gAE1A-,gARC-, and gABA-transformed cells were subcultured for a long period to determine the stability of the transfecting DNAs. Subculture in a nonselective medium resulted in cells which lost the transfecting DNAs. Subculture in a selective medium resulted in the selection of cells which maintained the gpt gene expression but lost the Ad12 gene expression. These results indicate that the transfecting DNA is present in an unstable state in KB cells.  相似文献   

9.
Formation of hybrids between viral deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) was used to detect virus-specific RNA in the nuclei and polyribosomes of transformed and tumor cells induced by "highly" oncogenic human adenovirus (Ad) types 12, 18, and 31. The presence of virus-specific RNA in the cell nucleus, and the inhibitory effect of actinomycin D on its synthesis, suggest that adenovirus-specific RNA is transcribed from a DNA template in the nucleus. Ad 12, 18, and 31 virus-specific RNA did not hybridize significantly with the DNA of the "weakly" oncogenic adenovirus group (Ad 3, 7, 11, 14, 16, and 21) or with that of nononcogenic Ad 2 and 4. Labeled RNA from Ad 12, 18, and 31 tumor cells hybridized with heterologous Ad 12, 18, and 31 DNA 30 to 60% as efficiently as with homologous DNA. Thus, common viral genes are transcribed in tumor cells induced by Ad 12, 18, and 31.  相似文献   

10.
We have examined the functional similarity of the transforming genes for replicative functions among three different subgroups of human adenoviruses (A, B, and C), using mutant complementation as an assay. A host range deletion mutant (dl201.2) of Ad2 (nononcogenic subgroup C) lacking about 5% of the viral DNA covering two early gene blocks (E1a and E1b) involved in cellular transformation was isolated and tested for its ability to replicate in nonpermissive KB cells in the presence of Ad7 (weakly oncogenic group B) or ad12 (highly oncogenic group A). The complementation of the mutant defect was demonstrated by cleaving the viral DNA extracted from mixed infected cells or the DNA extracted from purified virions from mixed infected cells with restriction endonuclease BamHI, which produces a different cleavage pattern with the DNA of each serotype. It was found that the defects in E1a plus E1b of dl201.2 could be complemented by Ad7 and Ad12, indicating that these genes in Ad2, Ad7, and Ad12 have similar functions during productive infection.  相似文献   

11.
12.
Virus-specific cytoplasmic RNA was isolated from rat cell lines transformed by fragments of adenovirus type 5 DNA, and the RNAs were translated in cell-free systems derived from wheat germ or rabbit reticulocytes. RNA was isolated from cell lines transformed by the following fragments: XhoI-C (leftmost 15.5%), HindIII-G (leftmost 8%), and HpaI-E (leftmost 4.5%). In addition, the adenovirus type 5-transformed human embryonic kidney line 293.C31 was investigated. The products were immunoprecipitated with serum from tumor-bearing hamsters and analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The results show that all transformed cells investigated contain early region 1a-specific RNAs which can be translated into proteins with molecular weights of 34,000 (34K), 36K, 40K, and 42K. Transformed cells that also contain an intact early region 1b synthesized RNA which can be translated into proteins with molecular weights of 19K and 65K. Minor proteins of 15K, 16K, 17.5K, 18K, 25K, and 29K were also observed, but these proteins could not be mapped unambiguously. Cells transformed by the 8% HindIII-G apparently lack RNA encoding the 65K protein, but they do contain RNA coding for the 19K protein.  相似文献   

13.
Unlike most adenovirus (Ad) serotypes, the species B Ads do not use the coxsackie-adenovirus receptor as an attachment receptor. The species B attachment receptor(s) has not yet been identified and is also poorly characterized. Species B Ads can be further divided into species B1 and B2 Ads, and these display different organ tropisms, suggesting a difference in receptor usage. We have studied the receptor interactions of the species B1 serotypes 3p and 7p and the species B2 serotypes 11p and 35 and characterized the properties of the species B receptor(s). Reciprocal blocking experiments using unlabeled Ad11p or Ad3p virions to block the binding to A549 cells of (35)S-labeled 3p, 7p, 11p, and 35 showed that only Ad11p virions efficiently blocked the binding of all the species B Ads studied (> or =70%). Thus, there is apparently a common species B Ad receptor (sBAR). However, Ad3p virions only partially (< or =30%) blocked the binding of Ad11p and Ad35 to A549 cells. Binding experiments after trypsin treatment of the cells confirmed that the species B2 serotypes address at least two different receptors on A549 and J82 cells, since sBAR is trypsin sensitive but the species B2 Ad receptor (sB2AR) is not. Both receptors are proteins or glycoproteins, since binding of all species B serotypes was abolished after proteinase K or subtilisin treatment of A549 or J82 cells. Furthermore, binding of the species B serotypes to sBAR was abolished with EDTA and restored with Ca(2+), whereas the binding of Ad11p and Ad35 to SB2AR was independent of divalent cations.  相似文献   

14.
J Maat  H Van Ormondt 《Gene》1979,6(1):75-90
The nucleotide sequence of the region between map positions 4.5 (HpaI-site) and 8.0 (HindIII-site) of adenovirus type 5 (Ad5) DNA has been determined. This stretch of DNA is part of the transforming HindIII-G fragment, which is 2809 nucleotides long. The sequenced segment was found to have a long open reading frame for protein biosynthesis, starting 23 nucleotides from the HpaI site and extending all the way to the HindIII-G site, which could code for a protein of at least 44 000 daltons. The possible correlation beteen the coding capacity of the HindIII-G fragment and the "transforming" proteins specified by it will be discussed in the light of the recent data on the splicing of early mRNAs.  相似文献   

15.
Physical organization of subgroup B human adenovirus genomes.   总被引:21,自引:13,他引:8       下载免费PDF全文
Cleavage sites of nine bacterial restriction endonucleases were mapped in the DNA of adenovirus type 3 (Ad3) and Ad7, representative serotypes of the "weakly oncogenic" subgroup B human adenoviruses. Of 94 sites mapped, 82 were common to both serotypes, in accord with the high overall sequence homology of DNA among members of the same subgroups. Of the sites in Ad3 and Ad7 DNA, fewer than 20% corresponded to mapped restriction sites in the DNA of Ad2 or Ad5. The latter serotypes represent the "nononcogenic" subgroup C, having only 10 to 20% overall sequence homology with the DNA of subgroup B adenoviruses. Hybridization mapping of viral mRNA from Ad7-infected cells resulted in a complex physical map that was nearly identical to the map of early and late gene clusters in Ad2 DNA. Thus the DNA sequences of human adenoviruses of subgroups B and C have significantly diverged in the course of viral evolution, but the complex organization of the adenovirus genome has been rigidly conserved.  相似文献   

16.
Adenoviruses (Ads) are icosahedral, nonenveloped viruses with a double-stranded DNA genome. The 51 known Ad serotypes exhibit profound variations in cell tropism and disease types. The number of observed Ad infections is steadily increasing, sometimes leading to fatal outcomes even in healthy individuals. Species B Ads can cause kidney infections, hemorrhagic cystitis, and severe respiratory infections, and most of them use the membrane cofactor protein CD46 as a cellular receptor. The crystal structure of the human Ad type 11 (Ad11) knob complexed with CD46 is known; however, the determinants of CD46 binding in related species B Ads remain unclear. We report here a structural and functional analysis of the Ad11 knob, as well as the Ad7 and Ad14 knobs, which are closely related in sequence to the Ad11 knob but have altered CD46-binding properties. The comparison of the structures of the three knobs, which we determined at very high resolution, provides a platform for understanding these differences and allows us to propose a mechanism for productive high-affinity engagement of CD46. At the center of this mechanism is an Ad knob arginine that needs to switch its orientation in order to engage CD46 with high affinity. Quantum chemical calculations showed that the CD46-binding affinity of Ad11 is significantly higher than that of Ad7. Thus, while Ad7 and Ad14 also bind CD46, the affinity and kinetics of these interactions suggest that these Ads are unlikely to use CD46 productively. The proposed mechanism is likely to determine the receptor usage of all CD46-binding Ads.  相似文献   

17.
CD46 is used by human group B adenoviruses (Ads) as a high-affinity attachment receptor. Here we show evidence that several group B Ads utilize an additional receptor for infection of human cells, which is different from CD46. We tentatively named this receptor receptor X. Competition studies with unlabeled and labeled Ads, recombinant Ad fiber knobs, and soluble CD46 and CD46 antibodies revealed three different subgroups of group B Ads, in terms of their receptor usage. Group I (Ad16, -21, -35, and -50) nearly exclusively uses CD46. Group II (Ad3, -7p, and -14) utilizes receptor X and not CD46. Group III (Ad11p) uses both CD46 and the alternative receptor X. Interaction of group II and III Ads with receptor X occurs via the fiber knob. Receptor X is an abundantly expressed glycoprotein that interacts with group II and III Ads at relatively low affinity in a Ca(2+)-dependent manner. This receptor is expressed at high levels on human mesenchymal and undifferentiated embryonic stem cells, as well as on human cancer cell lines. These findings have practical implications for stem cell and gene therapy.  相似文献   

18.
19.
We have studied the ability of adenovirus type 12 (Ad12) to complement the Ad5 transformation-defective host rang (hr) mutants during infection of human cells (HeLa) or hamster cells (BHK-21). The group I mutant hr3 (mapped within 1.3 to 3.7 map units), which is incapable of synthesizing viral DNA, was complemented for both DNA synthesis and infectious virus production in nonpermissive HeLa cells during coinfection with Ad12. Similarly, the group II mutant hr6 (6.1 to 9.4 map units), which does synthesize DNA, was also shown to be complemented for virus production. When the host cells were BHK-21, an established hamster cell line that is permissive for Ad5 but nonpermissive for Ad12 DNA synthesis and virus production, coinfection with Ad5 and Ad12 did not overcome the block to Ad12 DNA synthesis. Coinfection of BHK-21 cells with Ad12 and either hr3 or hr6 leads to the complementation of only the group I mutant (hr3). The inability of Ad12 to complement hr6 in BHK-21 cells may be due to the failure of Ad12 to express an early gene product from the region corresponding to early region 1B (4.5 to 11 map units) Ad5 where hr6 and the other group II mutations are located.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号