共查询到17条相似文献,搜索用时 109 毫秒
1.
构建了共表达烟酸转磷酸核糖激酶(NAPRTase)和丙酮酸羧化酶(PYC)的重组质粒pTrc99a-pncB-pyc,并考察了重组菌E.coli NZN111/pTrc99a-pncB-pyc生产丁二酸的能力。结果表明:重组菌NZN111/pTrc99a-pncB-pyc的NAPRTase和PYC的比酶活达到最高,分别为20.75和1.04 U/mg,同时,辅酶NADH、NAD+及NAD(H)总量达到最高。厌氧摇瓶发酵结果:48 h能够消耗17.5 g/L的葡萄糖生成14.08 g/L的丁二酸,而丙酮酸的产量大幅度降低,仅为0.11 g/L。本研究为基因工程菌大肠杆菌厌氧条件下发酵生产丁二酸提供了一定的基础。 相似文献
2.
烟酸转磷酸核糖激酶和丙酮酸羧化酶共表达对大肠杆菌BA002产丁二酸的影响 总被引:1,自引:0,他引:1
大肠杆菌BA002是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。pncB是烟酸转磷酸核糖激酶 (NAPRTase) 的编码基因,通过过量表达pncB基因能够提高NAD(H)总量与维持合适的NADH/NAD+,从而恢复了厌氧条件下重组菌E. coli BA014 (BA002/pTrc99a-pncB) 的生长和产丁二酸的性能。然而,BA014在厌氧发酵过程中有大量丙酮酸积累,为进一步提高菌株的丁二酸生产能力,减少副产物丙酮酸的生成,共表达NAPRTase和来自于乳酸乳球菌 NZ9000中丙酮酸羧化酶 (PYC) 的编码基因pyc,构建了重组菌E. coli BA016 (BA002/pTrc99a-pncB-pyc)。3 L发酵罐结果表明,BA016发酵112 h后,共消耗了35.00 g/L的葡萄糖。发酵结束时,菌体OD600为4.64,产生了25.09 g/L丁二酸。通过共表达pncB和pyc基因,使BA016的丙酮酸积累进一步降低,丁二酸产量进一步提高。 相似文献
3.
过量表达Bacillus subtilis磷酸烯醇式丙酮酸羧化激酶对大肠杆菌产琥珀酸的影响 总被引:2,自引:0,他引:2
在大肠杆菌厌氧混合酸发酵途径中,磷酸烯醇式丙酮酸羧化酶(PPC)和磷酸烯醇式丙酮酸羧化激酶(PCK)皆可催化由磷酸烯醇式丙酮酸(PEP)到草酰乙酸(OAA)的反应。鉴于经由PCK催化的反应伴有ATP的生成,理论上更有利于菌体生长和产酸,本研究以大肠杆菌W3110(△pfl,△ldh)为出发菌株,利用λ-Red同源重组系统构建了其ppc缺陷菌株并在此基础上过量表达了Bacillus subtilispck基因。初步的厌氧发酵实验表明:过量表达pck可在一定程度上恢复初始菌株厌氧代谢葡萄糖的能力。其中又以ppc缺陷株更为明显,其耗糖能力和产酸能力分别为对照菌株的4.2和15.3倍。 相似文献
4.
水分胁迫对露花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响 总被引:4,自引:1,他引:3
水分胁迫能引进露花叶片PEP羧化酶的活力,酶蛋白和mRNA水平的提高。复水后,叶片PEP羧化酶表达量降低,茎中的PEP羧化酶在水分胁迫和恢复水分供应过程中变化情况与叶片相似,兼性CAM植物的碳代谢类型转变发生在植物的绿色组织中。 相似文献
5.
6.
植物磷酸烯醇式丙酮酸羧化酶的功能及其在基因工程中的应用 总被引:1,自引:0,他引:1
植物磷酸烯醇式丙酮酸羧化酶(Phosphoenolpyruvate carboxylase,PEPC,EC 4.1.1.31)是广泛存在的一种细胞质酶,催化磷酸烯醇式丙酮酸(PEP)和HCO3-生成草酰乙酸(OAA),后者可转化生成三羧酸循环的多种中间产物.PEPC在植物细胞中参与植物的光合碳同化等重要代谢途径,并且在不同组织中具有多种生理功能.PEPC同时也参与调控植物种子的营养物质合成与代谢过程,控制糖类物质流向脂肪酸合成或蛋白质合成途径.以下介绍了植物PEPC的种类、蛋白质结构特点及其在植物组织中的调控方式,并重点论述了PEPC在生物基因工程中的应用方面的进展,随着对其功能机制和应用研究的深入,将有助于植物PEPC在高产优质农作物育种、能源植物和工业微生物等的开发利用等方面得到更好的发展与应用. 相似文献
7.
8.
旨在研究丙酮酸羧化酶胞质同工酶(PC)基因在毕赤酵母中的过量表达对TCA还原途径碳源分流及草酰乙酸、L-苹果酸生产的影响,构建了表达载体pPIC3.5K-PC,并转化了毕赤酵母GS115.转化子经过表型鉴定,PCR分析和G418浓度梯度筛选获得了高拷贝的重组子( pas-01).甲醇诱导表达后,经SDS-PAGE分析及PC活性检测,发现酶活提高了3倍,说明PC在毕赤酵母中获得了成功表达.以pPIC3.SK转化菌为对照,对该重组子进行了草酰乙酸及苹果酸的发酵研究.结果显示,草酰乙酸产量( 177.4 mg/L)提高了109.6%,L-苹果酸的产量(127.45 mg/L)提高33.7%,菌体生物量提高15.7%,表明PC的过量表达有助于L-苹果酸和草酰乙酸的积累,并且对菌体的生长有一定的促进作用. 相似文献
9.
乳糖诱导重组尿酸酶基因在大肠杆菌中的表达 总被引:1,自引:0,他引:1
对用乳糖替代异丙基-β-D-硫代半乳糖苷(IPTG)诱导重组产朊假丝酵母尿酸酶基因在E.coli JM109(DE3)中表达进行了研究,拟建立一种高效低成本的生产重组尿酸酶的工艺路线。通过摇瓶试验对诱导所采用的乳糖浓度,诱导时机和诱导持续时间进行了优化,并考察在乳糖诱导下的目的产物表达动力学,随后在5 L发酵罐上进行扩大化培养以验证摇瓶优化的结果,进一步将乳糖作为诱导剂应用于高密度发酵过程。实验结果表明乳糖诱导的最佳浓度为5 g/L,最佳诱导时机是对数生长期中后期,诱导持续时间为9~10h;按照优化的条件在摇瓶和5 L发酵罐上进行分批培养,重组尿酸酶最大表达量可达菌体总蛋白的26%左右,可溶性蛋白的36%左右,略高于IPTG的诱导效果;高密度发酵过程菌体终密度达到OD600值40以上,尿酸酶表达量占菌体总蛋白25%左右。 相似文献
10.
11.
Bashir Sajo Mienda Mohd Shahir Shamsir 《Journal of biomolecular structure & dynamics》2013,31(11):2380-2389
Systems metabolic engineering and in silico analyses are necessary to study gene knockout candidate for enhanced succinic acid production by Escherichia coli. Metabolically engineered E. coli has been reported to produce succinate from glucose and glycerol. However, investigation on in silico deletion of ptsG/b1101 gene in E. coli from glycerol using minimization of metabolic adjustment algorithm with the OptFlux software platform has not yet been elucidated. Herein we report what is to our knowledge the first direct predicted increase in succinate production following in silico deletion of the ptsG gene in E. coli GEM from glycerol with the OptFlux software platform. The result indicates that the deletion of this gene in E. coli GEM predicts increased succinate production that is 20% higher than the wild-type control model. Hence, the mutant model maintained a growth rate that is 77% of the wild-type parent model. It was established that knocking out of the ptsG/b1101 gene in E. coli using glucose as substrate enhanced succinate production, but the exact mechanism of this effect is still obscure. This study informs other studies that the deletion of ptsG/b1101 gene in E. coli GEM predicted increased succinate production, enabling a model-driven experimental inquiry and/or novel biological discovery on the underground metabolic role of this gene in E. coli central metabolism in relation to increasing succinate production when glycerol is the substrate. 相似文献
12.
13.
In Escherichia coli, disruption of ptsG, which encodes the glucose-specific permease of the phosphotransferase transport system (PTS) protein EIICBGlc, is crucial for high succinate production. This mutation can, however, cause very slow growth and low glucose consumption
rates. The ptsG mutant (TUQ2), from wild type E. coli W1485, and E. coli
galP (encoding galactose permease) and glk (encoding glucose kinase) gene expression plasmids were constructed. TUQ2 increased the generation time to approximately
4 h and gave a higher final cell density of 0.5 g/l by expression of galP. However, glk expression had no effect on the mutant. After expression of pyruvate carboxylase (PYC) and galactose permease, the ptsG mutant showed higher succinate yield (1.2 mol/mol glucose) and the specific rate of glucose consumption from 0.33 to 0.6 g/1 h.
Received 31 August 2005; Revisions requested 27 September 2005; Revisions received 1 November 2005; Accepted 2 November 2005
An erratum to this article is available at . 相似文献
14.
乳糖作为诱导剂对重组目的蛋白表达的影响 总被引:32,自引:0,他引:32
将重组粒细胞-巨噬细胞集落刺激因子/白细胞介素3(GM-CSF/IL-3)融合蛋白表达菌BL21(DE3)(pFu)作为研究对象,对于以乳糖作为诱导剂时重组目的产物的诱导表达规律进行了深入的研究。分析比较了不同培养基中,不同生长阶段进行诱导对于产物表达的影响。对诱导所需的乳糖浓度、诱导持续时间长短等因素亦进行了研究。实验结果表明,在对诱导条件进行优化控制的前提下,利用乳糖作为诱导剂可以达到与IPTG类似的诱导效果。随后的研究中,将乳糖作为诱导剂应用于高密度发酵过程。这些研究结果为乳糖作为诱导剂最终应用于重组基因工程药物的工业化生产提供了有益的参考和借鉴。 相似文献
15.
Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C 总被引:1,自引:0,他引:1
Jantama K Zhang X Moore JC Shanmugam KT Svoronos SA Ingram LO 《Biotechnology and bioengineering》2008,101(5):881-893
Derivatives of Escherichia coli C were previously described for succinate production by combining the deletion of genes that disrupt fermentation pathways for alternative products (ldhA::FRT, adhE::FRT, ackA::FRT, focA-pflB::FRT, mgsA, poxB) with growth-based selection for increased ATP production. The resulting strain, KJ073, produced 1.2 mol of succinate per mol glucose in mineral salts medium with acetate, malate, and pyruvate as significant co-products. KJ073 has been further improved by removing residual recombinase sites (FRT sites) from the chromosomal regions of gene deletion to create a strain devoid of foreign DNA, strain KJ091(DeltaldhA DeltaadhE DeltaackA DeltafocA-pflB DeltamgsA DeltapoxB). KJ091 was further engineered for improvements in succinate production. Deletion of the threonine decarboxylase (tdcD; acetate kinase homologue) and 2-ketobutyrate formate-lyase (tdcE; pyruvate formate-lyase homologue) reduced the acetate level by 50% and increased succinate yield (1.3 mol mol(-1) glucose) by almost 10% as compared to KJ091 and KJ073. Deletion of two genes involved in oxaloacetate metabolism, aspartate aminotransferase (aspC) and the NAD(+)-linked malic enzyme (sfcA) (KJ122) significantly increased succinate yield (1.5 mol mol(-1) glucose), succinate titer (700 mM), and average volumetric productivity (0.9 g L(-1) h(-1)). Residual pyruvate and acetate were substantially reduced by further deletion of pta encoding phosphotransacetylase to produce KJ134 (DeltaldhA DeltaadhE DeltafocA-pflB DeltamgsA DeltapoxB DeltatdcDE DeltacitF DeltaaspC DeltasfcA Deltapta-ackA). Strains KJ122 and KJ134 produced near theoretical yields of succinate during simple, anaerobic, batch fermentations using mineral salts medium. Both may be useful as biocatalysts for the commercial production of succinate. 相似文献
16.
L-色氨酸是芳香族氨基酸的一种,被广泛应用于医药、食品和饲料等领域。大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统(PTS系统)在葡萄糖转运和磷酸化过程中起重要作用,是糖代谢基因表达调控的核心。利用Red同源重组系统,构建包含两类典型PTS系统突变(ptsHIcrr~-glf-glk~+和ptsG~-)的L-色氨酸生产菌,并对相关菌株进行补料分批发酵研究。结果表明,不同类型PTS系统突变对菌体生长、L-色氨酸产量、糖酸转化率及副产物生成均有较大影响。与出发菌相比,ptsHIcrr~-glf-glk~+突变株最高OD_(600)达到125,提高47.0%,产酸38.5 g/L,提高25.9%,糖酸转化率16.7%,提高26.5%,乙酸生成略有增加;ptsG~-突变株最高OD_(600)达到100,提高17.6%,产酸33.4 g/L,提高9.4%,糖酸转化率15.5%,提高17.4%,乙酸生成略有减少。对葡萄糖转运系统的进一步研究将为大肠杆菌合成L-色氨酸效率的提升提供帮助。 相似文献