首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
大肠杆菌BA002是敲除了乳酸脱氢酶的编码基因 (ldhA) 和丙酮酸-甲酸裂解酶的编码基因 (pflB) 的工程菌。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。pncB是烟酸转磷酸核糖激酶 (NAPRTase) 的编码基因,通过过量表达pncB基因能够提高NAD(H)总量与维持合适的NADH/NAD+,从而恢复了厌氧条件下重组菌E. coli BA014 (BA002/pTrc99a-pncB) 的生长和产丁二酸的性能。然而,BA014在厌氧发酵过程中有大量丙酮酸积累,为进一步提高菌株的丁二酸生产能力,减少副产物丙酮酸的生成,共表达NAPRTase和来自于乳酸乳球菌 NZ9000中丙酮酸羧化酶 (PYC) 的编码基因pyc,构建了重组菌E. coli BA016 (BA002/pTrc99a-pncB-pyc)。3 L发酵罐结果表明,BA016发酵112 h后,共消耗了35.00 g/L的葡萄糖。发酵结束时,菌体OD600为4.64,产生了25.09 g/L丁二酸。通过共表达pncB和pyc基因,使BA016的丙酮酸积累进一步降低,丁二酸产量进一步提高。  相似文献   

2.
苹果酸是一种重要的C4二羧酸,在食品、医药、化工等领域有广泛的应用。本文主要研究羧化途径强化及苹果酸酶失活对大肠杆菌好氧发酵生产苹果酸的影响。首先在大肠杆菌E2中过表达了磷酸烯醇式丙酮酸羧化酶基因ppc,得到菌株E21,苹果酸积累量从0.57 g/L提高到3.83 g/L。随后,分别过表达来自谷氨酸棒杆菌的丙酮酸羧化酶基因pyc和来自琥珀酸放线杆菌的磷酸烯醇式丙酮酸激酶pck基因,相应的工程菌株E21(pTrcpyc)和E21(pTrc-A-pck)分别产6.04和5.01 g/L苹果酸,得率分别达到0.79和0.65 mol/mol葡萄糖。敲除E21中的苹果酸酶基因mae A和mae B,苹果酸产量也显著提高了36%,达到5.21 g/L,得率为0.62 mol/mol。然而,在过表达pyc的基础上敲除苹果酸酶基因并不能进一步提高苹果酸的产量。经过摇瓶发酵条件的初步优化,菌株E21(pTrcpyc)生产12.45 g/L苹果酸,得率为0.84 mol/mol,达到理论得率的63.2%。  相似文献   

3.
好氧发酵生产琥珀酸工程菌株的构建   总被引:2,自引:0,他引:2  
通过分析大肠杆菌的碳源代谢途径, 利用基因敲除手段, 以Escherichia coli MG1655为出发菌株, 成功构建了琥珀酸好氧发酵生产工程菌E. coli QZ1111 (MG1655?ptsG?poxB?pta?iclR?sdhA)。检测结果表明该菌株能以葡萄糖为碳源, 在好氧发酵且不表达任何异源基因的条件下大量积累琥珀酸。摇瓶试验证明, 琥珀酸发酵产量达到26.4 g/L, 乙酸盐作为唯一检测到的副产物产量为2.3 g/L。二者浓度比达到11.5:1。  相似文献   

4.
【背景】Escherichia coli AFP111发酵生产丁二酸时大量副产乙酸,丁二酸得率低。【目的】代谢工程改造EscherichiacoliAFP111,提高丁二酸得率,降低副产物乙酸的生成,建立100 L规模的丁二酸发酵工艺。【方法】一步同源重组敲除乙酸合成途径关键酶基因,改造丁二酸合成途径关键酶启动子实现过表达;单因素优化5L发酵罐培养条件。【结果】敲除乙酸产生途径编码乙酸激酶和磷酸转乙酰酶的基因ackA-pta、苏氨酸脱羧酶和2-酮丁酸甲酸裂解酶的基因tdcDE获得SX02菌株,摇瓶发酵条件下其乙酸产量下降了53.42%,丁二酸得率提高9.85%。在SX02菌株基础上,经启动子改造过表达编码葡萄糖激酶的基因glk后获得菌株SX03,其Glk酶活性提高3.66倍,乙酸产量下降了31.62%,丁二酸得率提高8.28%。SX03菌株发酵生产丁二酸在5 L发酵罐进行放大,其乙酸产量为3.97 g/L,丁二酸得率为1.62 mol/mol葡萄糖,相比出发菌株的乙酸产量下降了75.76%,丁二酸得率提高19.12%。在5L发酵罐上对比研究了中和剂Na2CO3和NaOH混合液替换碱式MgCO3的发酵效果,并优化了发酵pH、搅拌转速和葡萄糖浓度,获得如下最适发酵条件:pH6.8,搅拌转速250r/min,葡萄糖100g/L,发酵结束时乙酸产量为2.24 g/L,丁二酸得率为1.66 mol/mol葡萄糖。中和剂替换优化后乙酸产量下降了20.65%,丁二酸得率提高2.47%。菌株SX03发酵工艺进一步在100 L发酵罐上实现放大,其乙酸产量为1.91 g/L,丁二酸得率为1.30 mol/mol葡萄糖。【结论】通过代谢工程改造的大肠杆菌,其副产物乙酸含量显著下降,丁二酸得率提高,并在5 L和100 L发酵罐上实现了工艺放大,展现出较大的工业化利用潜力。  相似文献   

5.
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因(ldhA)和丙酮酸-甲酸裂解酶的编码基因(pflB)的发酵生产丁二酸的潜力菌株。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。nadD为催化NAD(H)合成途径中烟酸单核苷酸(NaMN)生成烟酸腺嘌呤二核苷酸(NaAD)的烟酸单核苷酸腺苷酰转移酶(Nicotinic acid mononucleotide adenylyltransferase,NAMNAT)的编码基因,通过过量表达nadD基因能够提高NAD(H)总量与维持合适的NADH/NAD+比例。文中构建了重组菌E.coli NZN111/pTrc99a-nadD,在厌氧摇瓶发酵过程中通过添加终浓度为1.0 mmol/L的IPTG诱导表达,重组菌E.coli NZN111/pTrc99a-nadD中NAD+和NADH的浓度分别比宿主菌E.coli NZN111提高了3.21倍和1.67倍,NAD(H)总量提高了2.63倍,NADH/NAD+从0.64降低为0.41,使重组菌株恢复了厌氧条件下生长和代谢葡萄糖的能力。重组菌与对照菌相比,72 h内可以消耗14.0 g/L的葡萄糖产6.23 g/L的丁二酸,丁二酸产量增加了19倍。  相似文献   

6.
大肠杆菌aceE基因是编码丙酮酸脱氢酶多酶复合体PdhR的关键酶之一。利用Red重组系统敲除大肠杆菌MG1655的aceE基因后,阻断了丙酮酸流向TCA循环,导致丙酮酸的累积,也使菌体生长受到影响,在培养基中补加5 g/L KAc后可以在一定程度上弥补菌株在生长上的缺陷。摇瓶发酵36 h,MG1655没有积累丙酮酸,MG1655ΔaceE∷cat菌株可以积累26.77 g/L丙酮酸,为利用大肠杆菌发酵生产丙酮酸奠定了基础。  相似文献   

7.
L-phe是重要的食品和医药中间体,用大肠杆菌发酵葡萄糖生成phe时,对葡糖糖转运起重要作用的磷酸烯醇丙酮酸糖磷酸转移酶系统(PTS)对phe产量合成有很大影响,在大肠杆菌PTS系统中,葡糖糖主要由ptsG基因编码的葡萄糖特异性转运蛋白酶ⅡCBGlc转运入细胞,通过基因敲除技术获取ptsG缺陷菌株,可以减少菌株对葡糖糖的摄取,减少乙酸的生成,利于菌株的高密度发酵和相关代谢中间物获得。利用Red同源重组技术将大肠杆菌染色体上的ptsG基因进行敲除,得到PTS缺陷菌株MD-ptsG-。该菌株在以葡萄糖为惟一碳源的培养基中摇瓶培养,菌密度为对照菌株的3.5倍,L-phe产量提高12%。  相似文献   

8.
L-phe 是重要的食品和医药中间体,用大肠杆菌发酵葡萄糖生成 phe 时,对葡糖糖转运起重要作用的磷酸烯醇丙酮酸糖磷酸转移酶系统(PTS)对 phe 产量合成有很大影响,在大肠杆菌 PTS 系统中,葡糖糖主要由 ptsG 基因编码的葡萄糖特异性转运蛋白酶ⅡCBGlc转运入细胞,通过基因敲除技术获取ptsG缺陷菌株,可以减少菌株对葡糖糖的摄取,减少乙酸的生成,利于菌株的高密度发酵和相关代谢中间物获得.利用 Red 同源重组技术将大肠杆菌染色体上的 ptsG 基因进行敲除,得到 PTS 缺陷菌株 MD-ptsG-.该菌株在以葡萄糖为惟一碳源的培养基中摇瓶培养,菌密度为对照菌株的3.5倍,L-phe 产量提高12%.  相似文献   

9.
为实现可同时利用木糖和葡萄糖进行生产发酵,以产乙醇的大肠杆菌工程菌SZ470为出发菌株(△pflB,△frdABCD,△ackA,△ldhA),采用同源重组技术,敲除葡萄糖转运基因ptsG,以构建不受葡萄糖抑制效应影响的菌株SZ470P.SZ470P在5%混合糖(2.5%木糖和2.5%葡萄糖)培养基中能同时利用葡萄糖和木糖进行发酵,葡萄糖消耗量是13 g/L,为对照菌株SZ470的一半;木糖消耗量是20 g/L,是SZ470的3.8倍;乙醇的最高产量为15.01 g/L,转化率为89.13%,比SZ470提高了14.32%.结果表明,工程菌SZ470P可同时利用葡萄糖和木糖发酵生产高产量的乙醇.  相似文献   

10.
过量表达NADH氧化酶加速光滑球拟酵母合成丙酮酸   总被引:1,自引:0,他引:1  
[目的]进一步提高光滑球拟酵母(Torulopsis glabrata)发酵生产丙酮酸的生产强度.[方法]将来源于乳酸乳球菌(Lactococcus lactis)中编码形成水的NADH氧化酶noxE基因过量表达于丙酮酸工业生产菌株T. glabrata CCTCC M202019中,获得了一株NADH氧化酶活性为34.8 U/mg蛋白的重组菌T. glabrata-PDnoxE.[结果]与出发菌株T. glabrata CCTCC M202019相比,细胞浓度、葡萄糖消耗速率和丙酮酸生产强度分别提高了168%、44.9%和12%,发酵进行到36 h葡萄糖消耗完毕.补加50 g/L葡萄糖继续发酵20 h,则使丙酮酸浓度提高到67.2 g/L.葡萄糖消耗速度和丙酮酸生产强度增加的原因在于形成水的NADH氧化酶过量表达,导致NADH和ATP含量分别降低了18.1%和15.8%.而NAD<' 增加了11.1%.[结论]增加细胞内NAD<' 含量能有效地提高酵母细胞葡萄糖的代谢速度及目标代谢产物的生产强度.  相似文献   

11.
Lactate and succinate were produced from glucose by Corynebacterium glutamicum under oxygen deprivation conditions without growth. Addition of bicarbonate to the reaction mixture led not only to a 3.6-fold increase in succinate production rate, but also to a 2.3- and 2.5-fold increase, respectively, of the rates of lactate production and glucose consumption, compared to the control. Furthermore, when small amounts of pyruvate were added to the reaction mixture, acid production rates and the glucose consumption rate were multiplied by a factor ranging from 2 to 3. These phenomena were paralleled by an increase in the NAD(+)/NADH ratio, thus corroborating the view that the efficient regeneration of NAD(+) could be triggered by the addition of either bicarbonate or pyruvate. To investigate the global metabolism of corynebacteria under oxygen deprivation conditions, we engineered several strains where the genes coding for key metabolic enzymes had been inactivated by gene disruption and replacement. A lactate dehydrogenase (LDH)-deficient mutant was not able to produce lactate, suggesting this enzyme has no other isozyme. Although a pyruvate carboxylase (pyc) mutant exhibited similar behavior to that of the wild type, phosphoenolpyruvate carboxylase (ppc) mutants were characterized by a dramatic decrease in succinate production, which was concomitant to decreased lactate production and glucose consumption rates. This set of observations corroborates the view that in coryneform bacteria under oxygen deprivation conditions the major anaplerotic reaction is driven by the ppc gene product rather than by the pyc gene product. Moreover, intracellular NADH concentrations in C. glutamicum were observed to correlate to oxygen-deprived metabolic flows.  相似文献   

12.
Fermentation patterns of Escherichia coli with and without the phosphoenolpyruvate carboxylase (PPC) and pyruvate carboxylase (PYC) enzymes were compared under anaerobic conditions with glucose as a carbon source. Time profiles of glucose and fermentation product concentrations were determined and used to calculate metabolic fluxes through central carbon pathways during exponential cell growth. The presence of the Rhizobium etli pyc gene in E. coli (JCL1242/pTrc99A-pyc) restored the succinate producing ability of E. coli ppc null mutants (JCL1242), with PYC competing favorably with both pyruvate formate lyase and lactate dehydrogenase. Succinate formation was slightly greater by JCL1242/pTrc99A-pyc than by cells which overproduced PPC (JCL1242/pPC201, ppc(+)), even though PPC activity in cell extracts of JCL1242/pPC201 (ppc(+)) was 40-fold greater than PYC activity in extracts of JCL1242/pTrc99a-pyc. Flux calculations indicate that during anaerobic metabolism the pyc(+) strain had a 34% greater specific glucose consumption rate, a 37% greater specific rate of ATP formation, and a 6% greater specific growth rate compared to the ppc(+) strain. In light of the important position of pyruvate at the juncture of NADH-generating pathways and NADH-dissimilating branches, the results show that when PPC or PYC is expressed, the metabolic network adapts by altering the flux to lactate and the molar ratio of ethanol to acetate formation.  相似文献   

13.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.  相似文献   

14.
15.
The beta-lactamase inhibitor clavulanic acid is formed by condensation of a pyruvate-derived C3 unit with a molecule of arginine. A gene (pyc, for pyruvate converting) located upstream of the bls gene in the clavulanic acid gene cluster of Streptomyces clavuligerus encodes a 582-amino-acid protein with domains recognizing pyruvate and thiamine pyrophosphate that shows 29.9% identity to acetohydroxyacid synthases. Amplification of the pyc gene resulted in an earlier onset and higher production of clavulanic acid. Replacement of the pyc gene with the aph gene did not cause isoleucine-valine auxotrophy in the mutant. The pyc replacement mutant did not produce clavulanic acid in starch-asparagine (SA) or in Trypticase soy broth (TSB) complex medium, suggesting that the pyc gene product is involved in the conversion of pyruvate into the C3 unit of clavulanic acid. However, the beta-lactamase inhibitor was still formed at the same level as in the wild-type strain in defined medium containing D-glycerol, glutamic acid, and proline (GSPG medium) as confirmed by high-pressure liquid chromatography and paper chromatography. The production of clavulanic acid by the replacement mutant was dependent on addition of glycerol to the medium, and glycerol-free GSPG medium did not support clavulanic acid biosynthesis, suggesting that an alternative gene product catalyzes the incorporation of glycerol into clavulanic acid in the absence of the Pyc protein. The pyc replacement mutant overproduces cephamycin.  相似文献   

16.
We have cloned and characterized the gene PYC1, encoding the unique pyruvate carboxylase in the dimorphic yeast Yarrowia lipolytica. The protein putatively encoded by the cDNA has a length of 1,192 amino acids and shows around 70% identity with pyruvate carboxylases from other organisms. The corresponding genomic DNA possesses an intron of 269 bp located 133 bp downstream of the starting ATG. In the branch motif of the intron, the sequence CCCTAAC, not previously found at this place in spliceosomal introns of Y. lipolytica, was uncovered. Disruption of the PYC1 gene from Y. lipolytica did not abolish growth in glucose-ammonium medium, as is the case in other eukaryotic microorganisms. This unusual growth phenotype was due to an incomplete glucose repression of the function of the glyoxylate cycle, as shown by the lack of growth in that medium of double pyc1 icl1 mutants lacking both pyruvate carboxylase and isocitrate lyase activity. These mutants grew when glutamate, aspartate, or Casamino Acids were added to the glucose-ammonium medium. The cDNA from the Y. lipolytica PYC1 gene complemented the growth defect of a Saccharomyces cerevisiae pyc1 pyc2 mutant, but introduction of either the S. cerevisiae PYC1 or PYC2 gene into Y. lipolytica did not result in detectable pyruvate carboxylase activity or in growth on glucose-ammonium of a Y. lipolytica pyc1 icl1 double mutant.  相似文献   

17.
Previous studies have demonstrated the capability of Corynebacterium glutamicum for anaerobic succinate production from glucose under nongrowing conditions. In this work, we have addressed two shortfalls of this process, the formation of significant amounts of by-products and the limitation of the yield by the redox balance. To eliminate acetate formation, a derivative of the type strain ATCC 13032 (strain BOL-1), which lacked all known pathways for acetate and lactate synthesis (Δcat Δpqo Δpta-ackA ΔldhA), was constructed. Chromosomal integration of the pyruvate carboxylase gene pyc(P458S) into BOL-1 resulted in strain BOL-2, which catalyzed fast succinate production from glucose with a yield of 1 mol/mol and showed only little acetate formation. In order to provide additional reducing equivalents derived from the cosubstrate formate, the fdh gene from Mycobacterium vaccae, coding for an NAD(+)-coupled formate dehydrogenase (FDH), was chromosomally integrated into BOL-2, leading to strain BOL-3. In an anaerobic batch process with strain BOL-3, a 20% higher succinate yield from glucose was obtained in the presence of formate. A temporary metabolic blockage of strain BOL-3 was prevented by plasmid-borne overexpression of the glyceraldehyde 3-phosphate dehydrogenase gene gapA. In an anaerobic fed-batch process with glucose and formate, strain BOL-3/pAN6-gap accumulated 1,134 mM succinate in 53 h with an average succinate production rate of 1.59 mmol per g cells (dry weight) (cdw) per h. The succinate yield of 1.67 mol/mol glucose is one of the highest currently described for anaerobic succinate producers and was accompanied by a very low level of by-products (0.10 mol/mol glucose).  相似文献   

18.
19.
Corynebacterium glutamicum possesses both phosphoenolpyruvate carboxylase (PEPCx) and pyruvate carboxylase (PCx) as anaplerotic enzymes for growth on carbohydrates. To analyze the significance of PCx for the amino acid production by this organism, the wild-type pyc gene, encoding PCx, was used for the construction of defined pyc-inactive and pyc-overexpressing strains and the glutamate, lysine and threonine production capabilities of these recombinant strains of C. glutamicum were tested in comparison to the respective host strains. No PCx activity was observed in the pyc-inactive mutants whereas the pyc-overexpressing strains showed eight-to elevenfold higher specific PCx activity when compared to the host strains. In a detergent-dependent glutamate production assay, the pyc-overexpressing strain showed more than sevenfold higher, the PCx-deficient strain about twofold lower glutamate production than the wild-type. Overexpression of the pyc gene and thus increasing the PCx activity in a lysine-producing strain of C. glutamicum resulted in approximately 50% higher lysine accumulation in the culture supernatant whereas inactivation of the pyc gene led to a decrease by 60%. In a threonine-producing strain of C. glutamicum, the overexpression of the pyc gene led to an only 10 to 20% increase in threonine production, however, to a more than 150% increase in the production of the threonine precursor homoserine. These results identify the anaplerotic PCx reaction as a major bottleneck for amino acid production by C. glutamicum and show that the enzyme is an important target for the molecular breeding of hyperproducing strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号