首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Oxygen uptake and citric acid production by Candida lipolytica Y 1095   总被引:1,自引:0,他引:1  
The rates of oxygen uptake and oxygen transfer during cell growth and citric acid production by Candida lipolytica Y 1095 were determined. The maximum cell growth rate, 1.43 g cell/L . h, and volumetric oxygen uptake rate, 343 mg O(2)/L . h, occurred approximately 21 to 22 h after inoculation. At the time of maximum oxygen uptake, the biomass concentration was 1.3% w/v and the specific oxygen uptake rate was slightly greater than 26 mg O(2)/g cell . h. The specific oxygen uptake rate decreased to approximately 3 mg O(2)/g cell . h by the end of the growth phase.During citric acid production, as the concentration of dissolved oxygen was increased from 20% to 80% saturation, the specific oxygen uptake and specific citric acid productivity (mg citric acid/g cell . h) increased by 160% and 71%, respectively, at a biomass concentration of 3% w/v. At a biomass concentration of 5% w/v, the specific oxygen uptake and specific citric acid productivity increased by 230% and 82%, respectively, over the same range of dissolved oxygen concentrations.The effect of dissolved oxygen on citric acid yields and productivities was also determined. Citric acid yields appeared to be independent of dissolved oxygen concentration during the initial production phase; however, volumetric productivity (g citric acid/L . h) increased sharply with an increase in dissolved oxygen. During the second or subsequent production phase, citric acid yields increased by approximately 50%, but productivities decreased by roughly the same percentage due to a loss of cell viability under prolonged nitrogen-deficient conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

2.
Aims: To evaluate the effect of different physicochemical parameters such as agitation, aeration and pH on the growth and nitrile hydratase production by Rhodococcus erythropolis MTCC 1526 in a stirred tank reactor. Methods and Results: Rhodococcus erythropolis MTCC 1526 was grown in 7‐l reactor at different agitation, aeration and controlled pH. The optimum conditions for batch cultivation in the reactor were an agitation rate of 200 rev min?1, aeration 0·5 v/v/m at controlled pH 8. In this condition, the increase in nitrile hydratase activity was almost threefold compared to that in the shake flask. Conclusion: Agitation and aeration rate affected the dissolved‐oxygen concentration in the reactor which in turn affected the growth and enzyme production. Significance and Impact of the Study: Cultivation of R. erythropolis MTCC 1526 in the reactor was found to have significant effect on the growth and nitrile hydratase production when compared to the shake flask.  相似文献   

3.
The dissipation rate of turbulent kinetic energy (ε) is a key parameter for mixing in surface aerators. In particular, determination ε across the impeller stream, where the most intensive mixing takes place, is essential to ascertain that an appropriate degree of mixing is achieved. Present work by using commercial software VisiMix® calculates the energy dissipation rate in geometrically similar unbaffled surface aeration systems in order to scale-up the oxygen transfer process. It is found that in geometrically similar system, oxygen transfer rate is uniquely correlated with dissipation rate of energy. Simulation or scale-up equation governing oxygen transfer rate and dissipation rate of energy has been developed in the present work.  相似文献   

4.
The influence of oxygen on glycerol production by an osmophilic yeast, Candida magnoliae I(2)B, was studied in a bioreactor. Oxygen transfer rates (OTRs) and volumetric oxygen transfer coefficients (k(L)a) were determined at different aeration and agitation rates. Cell growth as well as glycerol production was strongly affected by oxygen supply. Improvement in OTRs resulted in increased cell growth and glycerol yield. However, at high OTRs, there was a reduction in glucose uptake rate, indicating Pasteur Effect, and glycerol accumulation was also reduced at k(L)a of 253 h(-1). The availability of oxygen per unit of cell mass was found to be the most important factor that controlled cell growth, glucose uptake, and glycerol yield. The overall productivity and yield of glycerol could be related with k(L)a. The biosynthesis of glycerol was found to both growth- and non-growth-associated, although glycerol was mainly produced in post-exponential phase.  相似文献   

5.
The green microalga Chlorella sp. TISTR 8990 was grown heterotrophically in the dark using various concentrations of a basal glucose medium with a carbon‐to‐nitrogen mass ratio of 29:1. The final biomass concentration and the rate of growth were highest in the fivefold concentrated basal glucose medium (25 g L?1 glucose, 2.5 g L?1 KNO3) in batch operations. Improving oxygen transfer in the culture by increasing the agitation rate and decreasing the culture volume in 500‐mL shake flasks improved growth and glucose utilization. A maximum biomass concentration of nearly 12 g L?1 was obtained within 4 days at 300 rpm, 30°C, with a glucose utilization of nearly 76% in batch culture. The total fatty acid (TFA) content of the biomass and the TFA productivity were 102 mg g?1 and 305 mg L?1 day?1, respectively. A repeated fed‐batch culture with four cycles of feeding with the fivefold concentrated medium in a 3‐L bioreactor was evaluated for biomass production. The total culture period was 11 days. A maximum biomass concentration of nearly 26 g L?1 was obtained with a TFA productivity of 223 mg L?1 day?1. The final biomass contained (w/w) 13.5% lipids, 20.8% protein and 17.2% starch. Of the fatty acids produced, 52% (w/w) were saturated, 41% were monounsaturated and 7% were polyunsaturated (PUFA). A low content of PUFA in TFA feedstock is required for producing high quality biodiesel. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1589–1600, 2017  相似文献   

6.
7.
A recombinant avidin-producing Mut+ Pichia pastoris strain was used as a model organism to study the influence of the methanol feeding strategy on the specific product productivity (q(p)) and protein glycosylation. Fed-batch cultivations performed at various specific growth rates (micro) and residual methanol concentrations showed that the specific avidin productivity is growth-dependent. The specific productivity increases strongly with the specific growth rate for micro ranging from 0 to 0.02 h(-1), and increases only slightly with the specific growth rate above this limit. N-terminal glycosylation was also found to be influenced by the specific growth rate, since 9-mannose glycans were the most abundant form at low growth rates, whereas 10-mannose carbohydrate chains were favored at higher micro. These results show that culture parameters, such as the specific growth rate, may significantly affect the activity of glycoproteins produced in Pichia pastoris. In terms of process optimization, this suggests that a compromise on the specific growth rate may have to be found, in certain cases, to work with an acceptable productivity while avoiding the addition of many mannoses.  相似文献   

8.
Effects of culture aeration rate on production and antioxidant property of exopolysaccharide (EPS) by Armillaria mellea were investigated in a 5‐L stirred‐tank bioreactor where an optimal biomass aeration rate of 1.2 vvm with 0.22 g/g cell yield and 0.6 vvm EPS formation rate with 7.66 mg/g product yield were achieved. A two‐stage aeration process to maximize the biomass and EPS productions proceeded with a 1.55‐fold enhancement (from 4.28 to 6.65 g/L) in biomass formation and a 2.68‐fold enhancement (from 86.9 to 233.2 mg/L) in the EPS production, as compared with those from the aeration rate of 0.3 vvm. The molecular weights of EPS in cultures of different aeration rates are closely correlated with their protein/polysaccharide ratios (R2=0.830) and EC50 (EC50, the effective concentration where the antioxidant property is 50%) values in antioxidant activity (R2=0.960), reducing power (R2=0.894) and chelating ability (R2=0.954). EPS from the two‐stage aeration rate culture shows a strong antioxidant property by the conjugated diene method, reducing power and chelating ability on ions. Therefore, we present results to regulate and to optimize A. mellea cultures to efficiently produce biomass and EPS. The fermented EPS has the potential to be used as for antioxidant‐related functional foods and pharmaceutical industries.  相似文献   

9.
10.
Oxygen limitation is one of the most frequent problems associated with the application of shaking bioreactors. The gas-liquid oxygen transfer properties of shaken 48-well microtiter plates (MTPs) were analyzed at different filling volumes, shaking diameters, and shaking frequencies. On the one hand, an optical method based on sulfite oxidation was used as a chemical model system to determine the maximum oxygen transfer capacity (OTR(max)). On the other hand, the Respiration Activity Monitoring System (RAMOS) was applied for online measurement of the oxygen transfer rate (OTR) during growth of the methylotropic yeast Hansenula polymorpha. A proportionality constant between the OTR(max) of the biological system and the OTR(max) of the chemical system were indicated from these data, offering the possibility to transform the whole set of chemical data to biologically relevant conditions. The results exposed "out of phase" shaking conditions at a shaking diameter of 1 mm, which were confirmed by theoretical consideration with the phase number (Ph). At larger shaking diameters (2-50 mm) the oxygen transfer rate in MTPs shaken at high frequencies reached values of up to 0.28 mol/L/h, corresponding to a volumetric mass transfer coefficient (k(L)a) of 1,600 1/h. The specific mass transfer area (a) increases exponentially with the shaking frequency up to values of 2,400 1/m. On the contrary, the mass transfer coefficient (k(L)) is constant at a level of about 0.15 m/h over a wide range of shaking frequencies and shaking diameters. However, at high shaking frequencies, when the complete liquid volume forms a thin film on the cylindric wall of the well, the mass transfer coefficient (k(L)) increases linearly to values of up to 0.76 m/h. Essentially, the present investigation demonstrates that the 48-well plate outperforms the 96-well MTP and shake flasks at widely used operating conditions with respect to oxygen supply. The 48-well plates emerge, therefore, as an excellent alternative for microbial cultivation and expression studies combining the advantages of both the high-throughput 96-well MTP and the classical shaken Erlenmeyer flask.  相似文献   

11.
Aims: To improve the yield and productivity of docosahexaenoic acid (DHA) by Schizochytrium sp. in terms of the analysis of microbial physiology. Methods and Results: A two‐stage oxygen supply control strategy, aimed at achieving high concentration and high productivity of DHA, was proposed. At the first 40 h, KLa was controlled at 150·1 h?1 to obtain high μ for cell growth, subsequently KLa was controlled at 88·5 h?1 to maintain high qp for high DHA accumulation. Finally, the maximum lipid, DHA content and DHA productivity reached 46·6, 17·7 g l?1 and 111 mg l?1 h?1, which were 43·83%, 63·88% and 32·14% over the best results controlled by constant KLa. Conclusions: This paper described a two‐stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizochytrium sp. Significance and Impact of the study: This study showed the advantage of two‐stage control strategy in terms of microbial physiology. As KLa is a scaling‐up parameter, the idea developed in this paper could be scaled‐up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity.  相似文献   

12.
Gas sparging directly into the culture-broth is not done in cell culture, except when the gas flow rate is very small, because much foaming occurs.During screening of defoaming methods, foam was observed to be broken up effectively when it made contact with a net fabricated from hydrophobic materials. Providing a highly efficient oxygen supply to suspension culture was tried using the new defoaming method. In a 5 1 reactor equipped with the foam-eliminating net fabricated with polysiloxane, oxygen was transferred at 21 mmole/l·h equivalent to an about forty-fold higher rate than in conventional surface aeration. This was equivalent to a consumption rate of 1×108 cells/ml, even at a low oxygen gas flow rate of 0.1 cm/s corresponding to a fourth of the gas flow rate when foam leaked through the net.Perfusion culture of rat ascites hepatoma cell JTC-1 was successfully carried out in the 51 scale culture system with the net and a hydrophobic membrane for cell filtration. The viable cell concentration reached 2.7×107 cells/ml after twenty-seven days, in spite of the nutrient-deficient condition of the lower medium exchange rate, that is, a working volume a day, and viability was maintained at more than 90%. In a 1.21 scale culture of mouse-mouse hybridoma cell STK-1, viable cell concentration reached 4×107 cells/ml. These results showed that oxygen transfer by gas sparging with defoaming was useful for high density suspension culture. A foam-breaking mechanism was proposed.Abbreviations Eagle's MEM Eagle's minimal essential medium - Dulbecco's modified Eagle MEM Dulbecco's modified Eagle minimal essential medium  相似文献   

13.
The effect of oxygen transfer rate (OTR) on β-carotene production by Blakelsea trispora in shake flask culture was investigated. The results indicated that the concentration of β-carotene (704.1 mg/l) was the highest in culture grown at maximum OTR of 20.5 mmol/(l h). In this case, the percentage of zygospores was over 50.0% of the biomass dry weight. On the other hand, OTR level higher than 20.5 mmol/(l h) was found to be detrimental to cell growth and pigment formation. To elucidate the effect of oxidative stress on β-carotene synthesis, the accumulation of hydrogen peroxide during fermentation under different OTRs was determined. A linear response of β-carotene synthesis to the level of H2O2 was observed, indicating that β-carotene synthesis is stimulated by H2O2. However, there was an optimal concentration of H2O2 (2400 μM) in enhancing β-carotene synthesis. At a higher concentration of H2O2, β-carotene decreased significantly due to its toxicity.  相似文献   

14.
Heat-shock protein glycoprotein (gp96) serves as a natural adjuvant for chaperoning antigenic peptide into the immune surveillance pathway. In our laboratory, MethA tumor cell suspension culture process has been recently developed for gp96 production in spinner flask. In this work, effects of dissolved oxygen tension (DOT) and agitation rate on this process were studied in stirred-tank bioreactor. The optimal conditions for gp96 production were different with those for MethA tumor cell growth. MethA tumor cell growth pattern was not much changed by various levels of DOT and agitation rate, while gp96 biosynthesis was more sensitive to DOT and agitation rate. Compared with 50% of DOT, the production and specific productivity of gp96 was increased by 27 and 66% at 10% of DOT, respectively. Compared with the agitation rate of 100 rpm, the production and volumetric productivity of gp96 was increased by 48 and 144% at the agitation rate of 200 rpm, respectively. Low DOT (i.e., 10% of air saturation) and high agitation rate (i.e., 200 rpm) were identified to be favorable for gp96 biosynthesis. The results of this work might be useful to scale-up the bioprocess into the pilot scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号