首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recombinant fibronectin (FN) fragments and their mutant proteins were produced to elucidate the role of type III homology repeats in cell adhesive activity within the cell-binding domain of FN. Cell adhesive activity of the 11.5-kDa fragment, the cell attachment site of the cell-binding domain, was less than 0.1% that of native FN despite the presence of the Arg-Gly-Asp-Ser sequence. The activity increased as type III homology repeats were added to the N terminus of the 11.5-kDa fragment, and a 52-kDa fragment with four additional type III repeats had almost the same activity of native FN. Deletion of Arg-Gly-Asp from the fully active fragments completely abolished the cell adhesive activity. Deletion of one or two repeats from the 52-kDa fragment affected the extent of the cell adhesive activity, the degree of the effect being inversely correlated with the distance of the deletion from the type III repeat containing Arg-Gly-Asp-Ser. Rearrangement of type III repeats caused much loss of activity. These results suggest that the number and kinds of type III repeats and their correct alignment rather than the putative synergistic site decide the extent of the specific cell adhesive activity.  相似文献   

2.
Rat monoclonal antibodies were raised against fragment E3 of the mouse Engelbreth-Holm-Swarm (EHS) tumor laminin and selected according to their exclusive reaction with laminin A chain by immunoblotting and staining pattern in embryonic kidneys by immunofluorescence. Immunochemical studies of nine purified antibodies showed a comparable reaction with unfragmented laminin and fragment E3 but no cross-reaction with several other, unrelated laminin fragments including the major cell-binding fragment E8. Reduction or pepsin digestion of fragment E3 reduced or abolished antibody binding indicating that most of the epitopes involved are conformation dependent and do not include carbohydrates. They are, however, not identical as shown by different reactivities after proteolytic or chemical cleavage of E3. Four of the antibodies were highly active in inhibiting cell adhesion of the teratocarcinoma cell line F9 and the Schwannoma cell line RN22 on fragment E3 (IC50 approximately 1 microgram/ml), while the others were distinctly less active. No inhibition was observed for cell adhesion on unfragmented laminin, consistent with previous findings that this is largely mediated by binding of fragment E8 to alpha 6 beta 1 integrin. A distinct correlation was observed between cell adhesion inhibition and the inhibition of heparansulfate proteoglycan and heparin binding to fragment E3. Since heparin is not very efficient in inhibiting cell adhesion, it indicates that heparin- and cell-binding sites on fragment E3 are in close proximity but not identical. Two of the antibodies also showed partial inhibition of kidney tubule formation in organ culture of embryonic kidney mesenchyme while the other antibodies were inactive. It suggests some but probably minor involvement of the fragment E3 structure of laminin in this developmental process.  相似文献   

3.
R Dardik  J Lahav 《Biochemistry》1991,30(38):9378-9386
Endothelial and other cell types synthesize thrombospondin (TSP), secrete it into their culture medium, and incorporate it into their extracellular matrix. TSP is a large multifunctional protein capable of specific interactions with other matrix components, as well as with cell surfaces, and can modulate cell adhesion to the extracellular matrix. With the aim of understanding the mechanism by which TSP exerts its effect on cell adhesion, we studied the interaction of endothelial cell TSP (EC-TSP) with three different cell types: endothelial cells, granulosa cells, and myoblasts. We find that endothelial cells specifically bind radiolabeled EC-TSP with a Kd of 25 nM, and the number of binding sites is 2.6 X 10(6)/cell. Binding is not inhibitable by the cell-adhesion peptide GRGDS, indicating that the cell-binding site of EC-TSP is not in the RGD-containing domain. Localization of the cell-binding site was achieved by testing two chymotryptic fragments representing different regions of the TSP molecule, the 70-kDa core fragment and the 27-kDa N-terminal fragment, for their ability to bind to the cells. Cell-binding capacity was demonstrated by the 70-kDa fragment but not by the 27-kDa fragment. Binding of both intact [125I]EC-TSP and of the 125I-labeled 70-kDa fragment was inhibited by unlabeled TSP, heparin, fibronectin (FN), monoclonal anti-TSP antibody directed against the 70-kDa fragment (B7-3), and by full serum, but not by heparin-absorbed serum or the cell-adhesion peptide GRGDS. The 70-kDa fragment binds to endothelial cells with a Kd of 47 nM, and the number of binding sites is 5.0 x 10(6)/cell.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Mechanism of fibronectin (FN)-induced chemotaxis of fibroblastic cells has not been fully understood. The present study was performed to establish a molecular nature of the chemotactic region of rat plasma FN. The chemotactic dose-response pattern of intact FN for mouse embryo fibroblastic cells, NIH-L13 cells, which was represented as a "bell-shape" curve with a maximum activity at around 50 nM, changed to a "biphasic" mode through a proteolysis with thermolysin. Two distinct chemotactic components were isolated from the thermolytic fragments. One component, a fragment with a molecular mass of 110-150 kDa, was estimated to contain the central cell-binding domain and the carboxyl-terminal heparin-binding domain of the intact FN molecule. Cell migration stimulated by the 110-150-kDa fragment increased successively in a dose-dependent manner, and the capability to promote the migration was much higher than that of the intact FN (over 2-fold). The second chemotactic component, a fragment with a molecular mass of 21 kDa, was shown to reside in the carboxyl-terminal fibrin-binding domain. The 21-kDa fragment produced a bell-shape dose-response pattern, being consistent with the intact FN, whereas a maximum response occurred at a 100-fold lower concentration (0.5 nM) than that of the intact FN molecule. At higher concentrations, this fragment revealed an inhibitory activity for the cell migration in response to the 110-150-kDa fragment. No significant molecular interaction between these two active components was observed by polyacrylamide gel electrophoresis under nondenaturing conditions, suggesting that the 21-kDa fragment may act directly on the cell to inhibit the cell migration. These results suggest that rat plasma FN contains at least two chemotactically active components that regulate cooperatively chemotactic migration of fibroblastic cells.  相似文献   

5.
Previously, we have shown that some lymphoid cell lines adhere to fibronectin (FN)-coated substratum, whereas others do not. In this study, the adhesion of five adherent lymphoid cell lines to different FN domains was examined. These cell lines ranged in their adherence to substratum coated with FN, the cell-binding domain (CBD) fragment, or the heparin-binding domain (HBD) fragments. None of the cell lines adhered to substratum coated with the gelatin-binding domain fragment. Three of the lymphoid cell lines adhered preferentially to HBD over CBD, whereas two other lymphoid cell lines and BHK fibroblasts adhered preferentially to CBD. These results suggest that two distinct adhesive interactions occur between cells and FN and that the pattern of interaction varies among cell types. Using MOPC 315 (which adheres preferentially to HBD) as a cell model to study the cell-HBD interaction, the HBD-promoted adhesion was found to be independent of the RGD sequence and could be inhibited by anti-FN antibodies. Moreover, the MOPC 315-HBD interaction had the following characteristics: (1) adhesion was temperature dependent, (2) presence of divalent cations was necessary, (3) integrity of cellular microfilaments but not microtubules was required, (4) inhibition of protein synthesis abolished adhesion, (5) pretreatment of cells with trypsin inhibited adhesion, and (6) the adhesion was mediated by the carboxyl-terminal HBD.  相似文献   

6.
Mesangial cell apoptosis induced by a fibronectin fragment   总被引:1,自引:0,他引:1  
We previously showed that in passive Heymann nephritis (PHN) rats, a large quantity of fibronectin (FN) fragments containing the central cell-binding (CCB) domain and adjacent domains are generated in the kidney and excreted into urine (Nishizawa et al., Biol Pharm Bull 1998; 21: 429–433). To ascertain whether the FN fragments could affect the progression of PHN, we investigated the effect of a 150 K FN fragment containing the CCB and carboxyl-terminal heparin-binding (Hep 2) domains on cultured rat mesangial cells. When rat mesangial cells cultured on FN-coated plates were exposed to the 150 K FN fragment, some mesangial cells detached from the FN substrate and then underwent apoptosis as judged by nuclear and DNA fragmentations. The 150 K FN fragment competitively inhibited the mesangial cell adhesion to the FN substrate in a dose-dependent manner. Furthermore, gelatinzymography of the conditioned medium of mesangial cells showed that the 150 K FN fragment induced and/or poteintiated the extracellular matrix (ECM)-degrading proteinases including matrix metalloproteinases (MMPs) of mesangial cells. These results indicate that the 150 K FN fragment may elicit mesangial cell apoptosis by disrupting the mesangial cell adhesion through two distinct ways: the inhibition of mesangial cell adhesion and the ECM-degradation by the 150 K FN fragment-induced MMPs. Thus, FN fragments containing the CCB and adjacent domains generated in the kidneys of PHN rats may be involved in the evolution of the renal injury.  相似文献   

7.
Bovine aortic and microvascular endothelial cells showed good adhesion with spreading on fibronectin or collagen IV and to a lower extent on laminin. Recognition of native laminin was due to its long arm fragment E8 and was mediated by alpha 6 integrins as demonstrated by antibody inhibition. A considerably stronger, RGD-dependent interaction was observed with the isolated laminin short arm fragment P1 previously shown to represent a cryptic cell-binding site. No adhesion was observed with the heparin-binding fragment E3. In contrast, murine microvascular endothelial cells transformed by the polyoma middle T oncogene showed preferential adherence and spreading on laminin via its E8 cell-binding site and also showed adhesion to fragment E3. Attachment to laminin fragment P1 and to collagen IV was low or negative and was never followed by spreading. These data show that the transformation of microvascular endothelial cells, which give them the property to form hemangiomas, also leads to changes in cell adhesion to extracellular matrix proteins, particularly to laminin fragments.  相似文献   

8.
Monocytes and lymphocytes form a second wave of infiltrating blood leukocytes in areas of tissue injury. The mechanisms for monocyte accumulation at these sites are not completely understood. Recently, however, fragments from extracellular matrix proteins including collagen, elastin, and fibronectin have been shown to induce monocyte chemotaxis. In this report we demonstrate that chemotactic activity for human monocytes is expressed when a 120-kDa fragment containing the RGDS cell-binding peptide is released from intact fibronectin or from larger fibronectin fragments. Monocytes, either from mononuclear cell Ficoll-Hypaque preparations (10-20% monocytes, 89-90% lymphocytes) or from elutriation preparations (95% monocytes, 5% lymphocytes), but not lymphocytes, migrated toward 120-kDa fragment preparations (10(-7) M) in blind-end chambers when the cells were separated from the chemoattractant by a 5-micron pore polycarbonate filter either alone or overlying a 0.45-micron pore nitrocellulose filter. Neutrophils migrated toward zymosan-activated serum but not toward 10(-5)-10(-8) M concentrations of the 120-kDa fragment. Intact fibronectin had no chemotactic activity for human monocytes. Fibronectin was isolated from citrated human plasma by sequential gelatin-Sepharose affinity and DEAE ion-exchange chromatography in the presence of buffers containing 1 mM phenylmethylsulfonyl fluoride to prevent fragmentation. Controlled enzymatic digestion with thermolysin cleaved fibronectin into 30 kDa fibrin, 45 kDa collagen, and 150/160-kDa cell and heparin domains. Upon prolonged digestion, purified 150/160-kDa fragments were cleaved into 120-kDa cell and 30/40-kDa heparin-binding fragments. Even though the intact fibronectin molecule, the 150/160-kDa fragments, and the 120-kDa fragment, have cell binding activity for Chinese hamster ovary fibroblasts, only the 120-kDa fragment expressed chemotactic activity for human monocytes. Thus, the 120-kDa fibroblastic cell-binding fragment contains a cryptic site for monocyte chemotaxis which is expressed upon enzymatic cleavage of fibronectin.  相似文献   

9.
The immune epitopes of proliferating cell nuclear antigen (PCNA), also called cyclin, were analyzed by determining the reactivity between PCNA peptide fragments and anti-PCNA antibodies from lupus patients, murine monoclonal antibody (19A2), and rabbit anti-NH2-terminal peptide antibody. Limited digestion of PCNA/cyclin with Staphylococcus aureus V8 protease resulted in several peptide fragments. Five fragments of 30, 20, 15, 14, and 13 kDa were reactive with rabbit anti-NH2-terminal peptide antibody denoting that they contained the NH2-terminal peptide. The 30- and 20-kDa fragments reacted with 19A2 but the others did not. Lupus sera reacted with 17- and 15-kDa peptide fragments allowing their classification into three groups. Two of eight sera (type A) reacted only with the 17-kDa fragment. Two others (type B) reacted with both the 17- and 15-kDa fragments and the remaining four sera (type C) reacted only with the 15-kDa fragment. The sera reacting with the 15-kDa fragment also reacted with the 20-kDa fragment, but the sera reactive only with the 17-kDa fragment did not, indicating that the 17-kDa fragment was not a degradation product of 20-kDa fragments. The 19A2 epitope resided in the region between 15 and 20 kDa from the NH2 terminus, whereas there was at least one distinct epitope on each 15- and 17-kDa peptide, which were recognized by lupus autoantibodies.  相似文献   

10.
Specific fibronectin (Fn) fragments found in synovial fluid of arthritic joints potentially contribute to the loss of cartilage proteoglycans by inducing matrix metalloproteinase (MMP) expression. However, whether or not the Fn fragment-modulated changes in expression of MMPs result in a net increase in matrix-degradative activity through alterations in the balance between MMP activation and inhibition has not been established. To understand the mechanisms by which proteolytic Fn fragments may contribute to joint degeneration, conditioned medium from fibrocartilaginous cells exposed to Fn, its 30-kDa fragment containing the collagen/gelatin-binding domain, its 120-kDa fragment containing the central cell-binding domain, and the RGD peptide were assayed for MMPs, and MMP activators and inhibitors. We found that the 120-kDa fragment of Fn (but not intact Fn), the 30-kDa fragment, and the RGD peptide, dose-dependently induced procollagenase-1 and prostromelysin-1 and decreased levels of the tissue inhibitor of metalloproteinases (TIMPs) -1 and -2. The alpha5beta1 integrin was implicated in the induction of collagenase by the 120-kDa Fn fragment, since collagenase induction was abrogated in the presence of blocking antibody to this integrin. Conditioned medium from cells exposed to the 120-kDa Fn fragment also demonstrated increased levels of the activated collagenase-1, which resulted in significantly elevated collagen degradative activity. That the urokinase plasminogen activator (uPA) was involved in the activation of procollagenase-1 was suggested by findings that the 120-kDa Fn fragment induced uPA coordinately with procollagenase-1, and the activation of procollagenase-1 was dose-dependently inhibited in the presence of plasminogen activator inhibitor-1. These data demonstrate that the 120-kDa cell-binding fragment of Fn induces a net increase in matrix-degradative activity in fibrocartilaginous cells by concomitantly inducing MMPs and their activator, uPA, while decreasing TIMPs.  相似文献   

11.
Fibronectin (FN) is a multidomain extracellular matrix protein that induces attachment and chemotactic migration of fibroblastic cells. In this study we analyzed the molecular determinants involved in the FN-induced chemotactic migration of normal and SV40-transformed 3T3 cells. Two different monoclonal antibodies to the cell-binding site of FN blocked chemotaxis to a 140-kD FN fragment (Ca 140) containing the cell-binding domain. A monoclonal antibody to a determinant distant from the cell-binding site did not affect chemotaxis. A synthetic tetrapeptide, RGDS, which represents the major cell-attachment sequence, was able to compete with FN and the Ca 140 fragment in chemotaxis assays, but this peptide itself had no significant chemotactic activity. A larger peptide encompassing this sequence, GRGDSP, was chemotactic, while the peptide GRGESP, where a glutamic acid residue was substituted for aspartic acid, was inactive. Chemotactic migration could be prevented in a dose-dependent manner by a rabbit polyclonal antiserum to a 140-kD cell surface FN receptor. This antibody was more effective on normal than on transformed 3T3 cells. Neither the anti-FN receptor antiserum nor a monoclonal antibody to the cell-binding site of FN blocked migration induced by another potent chemoattractant, platelet-derived growth factor. These data indicate that FN-induced chemotaxis of 3T3 and SV3T3 cells is mediated via the RGDS cell-attachment site of FN and the 140-kD cell surface FN receptor. The interaction is specific and can be altered by transformation.  相似文献   

12.
Cells of the neural crest participate in a major class of cell migratory events during embryonic development. From indirect evidence, it has been suggested that fibronectin (FN) might be involved in these events. We have directly tested the role of FN in neural crest cell adhesion and migration using several in vitro model systems. Avian trunk neural crest cells adhered readily to purified plasma FN substrates and to extracellular matrices containing cellular FN. Their adhesion was inhibited by antibodies to a cell-binding fragment of FN. In contrast, these cells did not adhere to glass, type I collagen, or to bovine serum albumin in the absence of FN. Neural crest cell adhesion to laminin (LN) was significantly less than to FN; however, culturing of crest cells under conditions producing an epithelioid phenotype resulted in cells that could bind equally as well to LN as to FN. The migration of neural crest cells appeared to depend on both the substrate and the extent of cell interactions. Cells migrated substantially more rapidly on FN than on LN or type I collagen substrates; if provided a choice between stripes of FN and glass or LN, cells migrated preferentially on the FN. Migration was inhibited by antibodies against the cell-binding region of FN, and the inhibition could be reversed by a subsequent addition of exogenous FN. However, the migration on FN was random and displayed little persistence of direction unless cells were at high densities that permitted frequent contacts. The in vitro rate of migration of cells on FN-containing matrices was 50 microns/h, similar to their migration rates along the narrow regions of FN-containing extracellular matrix in migratory pathways in vivo. These results indicate that FN is important for neural crest cell adhesion and migration and that the high cell densities of neural crest cells in the transient, narrow migratory pathways found in the embryo are necessary for effective directional migration.  相似文献   

13.
The extracellular matrix molecule fibronectin (FN) is a glycoprotein whose major functional property is to support cell adhesion. FN contains at least two distinct cell-binding domains: the central cell-binding domain and the HepII/IIICS region. The HepII region comprises type III repeats 12-14 and contains proteoglycan-binding sites, while the alternatively spliced IIICS segment possesses the major alpha4beta1 integrin-binding sites. Both cell surface proteoglycans and integrins are important for mediating the adhesion of cells to this region of FN. By comparing heparin binding to different recombinant splice variants of the HepII/IIICS region, evidence was obtained for the existence of a novel heparin-binding site in the centre of the IIICS. Site-directed mutagenesis of basic amino acid sequences in this region reduced heparin binding to recombinant HepII/IIICS proteins and, in conjunction with mutations in the HepII region, caused a synergistic loss of activity. Using the H/120 variant of FN, which contains type III repeats 12-15 and the full-length IIICS region, and the H/95 variant of FN, which contains type III repeats 12-15 but lacks the high affinity integrin-binding LDV sequence, the relative roles played by cell-surface proteoglycans and integrins in mediating cell adhesion have been investigated. This was achieved by studying the effects of anti-integrin antibodies and exogenous heparin on A375 melanoma cell attachment to the wild-type and three different mutants of H/120 and H/95 in which the potential proteoglycan-binding sites were partially or completely removed. A375 cell adhesion to H/120 and its mutants was found to involve the co-operative action of both integrin and cell-surface proteoglycan binding, although integrin made a dominant contribution. Anti-integrin antibodies and exogenous heparin were capable of inhibiting melanoma cell adhesion to H/95 and in this case adhesion was due primarily to cell-surface proteoglycan and not integrin binding.  相似文献   

14.
The molecular interactions of laminin with several tumor cell lines and skin fibroblasts were investigated by radioligand binding studies and cell attachment assays using laminin, the laminin-nidogen complex, and laminin fragments as substrates and also domain-specific antibodies as inhibitors of cell attachment. The majority of cells showed a dual binding pattern for fragments 1 and 8 which originate from short-arm or long-arm structures of laminin, respectively. Both of these fragments in solution bind to suspended cells with high affinity (KD = 1-10 nM), with the receptor numbers for each fragment depending on the cell type. Competition studies and independent variation of receptor numbers demonstrated that the cell-binding structures on each fragment are different, implicating the existence of two distinct cellular receptors for laminin. The ability of these fragments to act as substrates for cell adhesion correlated with the presence of high affinity binding sites on the cells. However, only antibodies to fragment 8 were able to block cell adhesion to laminin, despite the presence of binding sites for fragment 1. A few cells had very low numbers of high affinity receptors for either fragment 1 or 8. The latter cell type was used to demonstrate that complex formation between laminin and nidogen, which binds to fragment 1 structures, reduces the potential of laminin for cell binding.  相似文献   

15.
The epitope of monoclonal antibody (mAb 4A), which recognizes the alpha subunit of the rod G protein, Gt, has been suggested to be both at the carboxyl terminus (Deretic, D., and Hamm, H.E. (1987) J. Biol. Chem. 262, 10839-10847) and the amino terminus (Navon, S.E., and Fung, B.K.-K. (1988) J. Biol. Chem. 263, 489-496) of the molecule. To characterize further the mAb 4A binding site on alpha t and to resolve the discrepancy between these results limited proteolytic digestion of Gt or alpha t using four proteases with different substrate specificities has been performed. Endoproteinase Arg-C, which cleaves the peptide bond at the carboxylic side of arginine residues, cleaved the majority of alpha t into two fragments of 34 and 5 kDa. The alpha t 34-kDa fragment in the holoprotein, but not alpha t-guanosine 5'-O-(3-thiotriphosphate), was converted further to a 23-kDa fragment. A small fraction of alpha t-GDP was cleaved into 23- and 15-kDa fragments. Endoproteinase Lys-C, which selectively cleaves at lysine residues, progressively removed 17 and then 8 residues from the amino terminus, forming 38- and 36-kDa fragments. Staphylococcus aureus V8 protease is known to remove 21 amino acid residues from the amino-terminal region of alpha t, with the formation of a 38-kDa fragment. L-1-Tosylamido-2-phenylethyl chloromethyl ketone-treated trypsin cleaved alpha t progressively into fragments of known amino acid sequences (38, then 32 and 5, then 21 and 12 kDa) and a transient 34 kDa fragment. The binding of mAb 4A to proteolytic fragments was analyzed by Western blot and immunoprecipitation. The major fragments recognized by mAb 4A on Western blots were the 34- and 23-kDa fragments obtained by endoproteinase Arg-C and tryptic digestion. Under conditions that allowed sequencing of the 15- and 5-kDa fragments neither the 34- nor the 23-kDa fragments could be sequenced by Edman degradation, indicating that they contained a blocked amino terminus. The smallest fragment that retained mAb 4A binding was the 23-kDa fragment containing Met1 to Arg204. Thus the main portion of the mAb 4A antigenic site was located within this fragment, indicating that the carboxyl-terminal residues from Lys205 to Phe350 were not required for recognition by the antibody. Additionally, the antibody did not bind the 38- and 36-kDa or other fragments containing the carboxyl terminus, showing that the amino-terminal residues from Met1 to Lys17 were essential for antibody binding to alpha t.  相似文献   

16.
We recently found that fibronectin (FN) had a functional site [YTIYVIAL sequence in the heparin-binding domain 2 (Hep 2)] that was capable of suppressing the integrin-mediated cell adhesion to extracellular matrix. However, our results also indicated that this anti-adhesive site seemed to be usually buried within the Hep 2 domain structure because of its hydrophobic nature, raising a question as to the physiological significance of the cryptic anti-adhesive activity of FN. The present study demonstrates that the cryptic anti-adhesive activity can be exposed through the physiological processes. A 30-kDa chymotryptic FN fragment derived from Hep 2 domain (Hep 2 fragment), which had no effect on adhesion of MSV-transformed nonproducer 3T3 cell line (KN(7)8) to FN, expressed the anti-adhesive activity after treatment with 6 M urea. Light scattering and circular dichroism measurements showed that the urea treatment induced the conformational change of the Hep 2 fragment from a more compact form to an unfolded one. Incubation of the Hep 2 fragment with heparin also induced similar conformational changes and expression of anti-adhesive activity. Additionally, both the urea and heparin treatments made the Hep 2 fragment and intact FN much more accessible to the polyclonal antibody (alphaIII14A), with a recognition site near the anti-adhesive site of FN. Specific cleavage of either the Hep 2 fragment or intact FN by matrix metalloproteinase 2 (MMP-2) released a 10-kDa fragment with the anti-adhesive activity, which was shown to have the exposed anti-adhesive site on the amino-terminal region. Thus, the cryptic anti-adhesive activity of FN can be expressed upon conformational change and proteolytic cleavage of Hep 2 domain.  相似文献   

17.
F1 is an adhesin of Streptococcus pyogenes which binds the N-terminal 70-kDa region of fibronectin with high affinity. The fibronectin binding region of F1 is comprised of a 43-residue upstream domain and a repeat domain comprised of five tandem 37-residue sequences. We investigated the effects of these domains on the assembly of fibronectin matrix by human dermal fibroblasts, MG63 osteosarcoma cells, or fibroblasts derived from fibronectin-null stem cells. Subequimolar or equimolar concentrations of recombinant proteins containing both the upstream and repeat domains or just the repeat domain enhanced binding of fibronectin or its N-terminal 70-kDa fragment to cell layers; higher concentrations of these recombinant proteins inhibited binding. The enhanced binding did not result in greater matrix assembly and was caused by increased ligand binding to substratum. In contrast, recombinant or synthetic protein containing the 43 residues of the upstream domain and the first 6 residues from the repeat domain exhibited monophasic inhibition with an IC(50) of approximately 10 nm. Truncation of the 49-residue sequence at its N or C terminus caused loss of inhibitory activity. The 49-residue upstream sequence blocked incorporation of both endogenous cellular fibronectin and exogenous plasma fibronectin into extracellular matrix and inhibited binding of 70-kDa fragment to fibronectin-null cells in a fibronectin-free system. Inhibition of matrix assembly by the 49-mer had no effect on cell adhesion to substratum, cell growth, formation of focal contacts, or formation of stress fibers. These results indicate that the 49-residue upstream sequence of F1 binds in an inhibitory mode to N-terminal parts of exogenous and endogenous fibronectin which are critical for fibronectin fibrillogenesis.  相似文献   

18.
《The Journal of cell biology》1986,103(6):2637-2647
We have compared the molecular specificities of the adhesive interactions of melanoma and fibroblastic cells with fibronectin. Several striking differences were found in the sensitivity of the two cell types to inhibition by a series of synthetic peptides modeled on the Arg-Gly-Asp-Ser (RGDS) tetrapeptide adhesion signal. Further evidence for differences between the melanoma and fibroblastic cell adhesion systems was obtained by examining adhesion to proteolytic fragments of fibronectin. Fibroblastic BHK cells spread readily on fl3, a 75-kD fragment representing the RGDS-containing, "cell-binding" domain of fibronectin, but B16-F10 melanoma cells could not. The melanoma cells were able to spread instead on f9, a 113-kD fragment derived from the large subunit of fibronectin that contains at least part of the type III connecting segment difference region (or "V" region); f7, a fragment from the small fibronectin subunit that lacks this alternatively spliced polypeptide was inactive. Monoclonal antibody and fl3 inhibition experiments confirmed the inability of the melanoma cells to use the RGDS sequence; neither molecule affected melanoma cell spreading, but both completely abrogated fibroblast adhesion. By systematic analysis of a series of six overlapping synthetic peptides spanning the entire type III connecting segment, a novel attachment site was identified in a peptide near the COOH- terminus of this region. The tetrapeptide sequence Arg-Glu-Asp-Val (REDV), which is somewhat related to RGDS, was present in this peptide in a highly hydrophilic region of the type III connecting segment. REDV appeared to be functionally important, since this synthetic tetrapeptide was inhibitory for melanoma cell adhesion to fibronectin but was inactive for fibroblastic cell adhesion. REDV therefore represents a novel adhesive recognition signal in fibronectin that possesses cell type specificity. These results suggest that, for some cell types, regulation of the adhesion-promoting activity of fibronectin may occur by alternative mRNA splicing.  相似文献   

19.
Site-directed mutagenesis studies have suggested that additional peptide information in the central cell-binding domain of fibronectin besides the minimal Arg-Gly-Asp (RGD) sequence is required for its full adhesive activity. The nature of this second, synergistic site was analyzed further by protein chemical and immunological approaches using biological assays for adhesion, migration, and matrix assembly. Fragments derived from the cell-binding domain were coupled covalently to plates, and their specific molar activities in mediating BHK cell spreading were compared with that of intact fibronectin. A 37-kD fragment purified from chymotryptic digests of human plasma fibronectin had essentially the same specific molar activity as intact fibronectin. In contrast, other fragments such as an 11.5-kD fragment lacking NH2-terminal sequences of the 37-kD fragment had only poor spreading activity on a molar basis. Furthermore, in competitive inhibition assays of fibronectin-mediated cell spreading, the 37-kD fragment was approximately 325-fold more active than the GRGDS synthetic peptide on a molar basis. mAbs were produced using the 37-kD protein as an immunogen and their epitopes were characterized. Two separate mAbs, one binding close to the RGD site and the other to a site approximately 15 kD distant from the RGD site, individually inhibited BHK cell spreading on fibronectin by greater than 90%. In contrast, an antibody that bound between these two sites had minimal inhibitory activity. The antibodies found to be inhibitory in cell spreading assays for BHK cells also inhibited both fibronectin-mediated cell spreading and migration of human HT-1080 cells, functions which were also dependent on function of the alpha 5 beta 1 integrin (fibronectin receptor). Assembly of endogenously synthesized fibronectin into an extracellular matrix was not significantly inhibited by most of the anti-37-kD mAbs, but was strongly inhibited only by the antibodies binding close to the RGD site or the putative synergy site. These results indicate that a second site distant from the RGD site on fibronectin is crucial for its full biological activity in diverse functions dependent on the alpha 5 beta 1 fibronectin receptor. This site is mapped by mAbs closer to the RGD site than previously expected.  相似文献   

20.
P-glycoprotein is an energy-dependent drug efflux pump with broad specificity for hydrophobic antitumor agents such as vinblastine, doxorubicin, and taxol. We have previously shown that [3H]azidopine and [125I] iodoaryl azidoprazosin, which are photoaffinity probes for the alpha 1-subunit of the L-type calcium channel and alpha 1-adrenergic receptor, respectively, specifically interact with P-glycoprotein, partially reverse multidrug resistance, and bind to a 6-kDa common domain in the 140-kDa P-glycoprotein molecule (Greenberger, L., Yang, C.-P. H., Gindin, E., and Horwitz, S. B. (1990) J. Biol. Chem. 265, 4394-4401). An immunological approach was used to identify the position of photoaffinity drug-binding domains in P-glycoprotein. Analysis was done with a series of site-specific rabbit polyclonal antibodies to peptides that mimic domains in the mouse mdr1b gene product. The antibodies were made against amino acid residues 269-284, 356-373, 665-682, 740-750, 907-924, and 1203-1222. Upon trypsin digestion, cleavage products of 95 and 55 kDa were obtained, which after further digestion migrated at 60 and 40 kDa, respectively. The 40-kDa fragment was recognized by the antibodies to residues 1203-1222 and 919-1276, while the 55-kDa fragment was recognized by these antibodies plus antibodies to residues 740-750 and 907-924. In contrast, the 95- and 60-kDa trypsin fragments were recognized only by the antibody to residues 269-284. The 55- and 40-kDa fragments, as well as the 95- and 60-kDa fragments, were major photolabeled species after digestion of P-glycoprotein. The previously identified 6-kDa photo-labeled P-glycoprotein fragment was within the 40-kDa trypsin fragment. These data suggest that there are two photoaffinity drug-binding domains in P-glycoprotein encoded by mouse mdr1b. The C-terminal site most likely resides within or in close proximity to putative transmembrane domains 11-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号