首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied changes in mitochondrial morphology and function in the smooth muscle of rat colon. Under confocal microscopy, tissues loaded with potentiometric dye displayed rapid and spontaneous depolarization. Cyclosporin A (CsA), inhibitor of the permeability transition pore (PTP), caused an increase in mitochondrial membrane potential (ΔΨm) in tissues from adult young animals. In aged rats these changes were not observed. This suggests that physiological activation of PTP in aged rats is reduced. Electron microscopy showed alterations of the mitochondrial ultrastructure in tissues from aged rats involving a decreased definition of the cristae and fragmentation of the mitochondrial membranes. We also detected an increase in apoptotic cells in the smooth muscle from aged animals. Our results show that the aging process changes PTP activity, the ability to maintain ΔΨm and mitochondrial morphology. It is suggested that these can be associated with mitochondrial damage and cell death.  相似文献   

2.
PTP1B has been shown to be a negative regulator of the insulin signal transduction in insulin resistant states. Herein we investigated IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of 10 and 28-week-old MSG-insulin resistant rats which represent different stages of insulin resistance. Our results demonstrated that the increase in PTP1B expression and/or association with IR in MSG animals may contribute to the impaired insulin signaling mainly in liver and muscle. Although, adipose tissue of 10-week-old MSG rats showed higher PTP1B expression and IR/PTP1B interaction, they were not sufficient to impair all insulin signaling since IRS-2 phosphorylation and association with PI3-kinase and Akt serine phosphorylation were increased, which may contribute for the increased adiposity of these animals. In 28-week-old-MSG rats there was an increase in IR/PTP1B interaction and reduced insulin signaling in liver, muscle and adipocytes, and a more pronounced insulin resistance.  相似文献   

3.
Erectile dysfunction in the aging male is caused, in part, by inadequate relaxation of the corpora cavernosal smooth musculature. Calcitonin gene-related peptide (CGRP), a peptide neurotrasmitter localized in the corpora cavernosa, is down-regulated in the aging rat penis. We examined the hypothesis that this reduction in CGRP may contribute to decreased cavernosal smooth muscle relaxation. Therefore, we sought to determine whether adenoviral-mediated gene transfer of prepro-CGRP (AdRSVCGRP) could enhance erectile responses in aged rats. We found a significant decrease in CGRP concentrations and in cAMP and cGMP levels in aged rat cavernosal tissue compared to younger rats. Aged rats also had significantly lower erectile function as determined by cavernosal nerve stimulation compared to younger rats. Five days after transfection with AdRSVCGRP, these aged rats had an approximately threefold increase in cavernosal CGRP levels compared to animals transfected with adenoviruses encoding nuclear-targeted beta-galactosidase (AdRSV beta gal). The AdRSVCGRP-transfected animals also demonstrated an increase in CGRP mRNA and immunohistochemical localization of CGRP in the smooth muscle of the corpora cavernosa. In addition, cAMP levels in the corpora cavernosa were significantly increased, whereas cGMP levels remained unchanged. Adenoviral transduction efficiency of beta-galactosidase reporter gene was measured by chemiluminescence and was observed in cavernosal tissue 5 days after transfection with AdRSV beta gal. More importantly, 5 days after administration of AdRSVCGRP, a significant increase was observed in the erectile response to cavernosal nerve stimulation in the aged rat, similar to the response observed in younger rats. These data suggest that in vivo adenoviral gene transfer of CGRP can physiologically improve erectile function in the aged rat.  相似文献   

4.
Plant cells undergoing programmed cell death (PCD) at late stages typically show chromatin condensation and endonucleolytic cleavage prior to obvious membrane or organelle ultrastructural changes. To investigate possible early PCD-associated events, we used microscopic observations and flow cytometry to quantitate mitochondrial membrane potential (DeltaPsim) changes during PCD at the single cell and population levels using Arabidopsis protoplasts. A DeltaPsim loss was commonly induced early during plant PCD and was important for PCD execution, as evidenced by the concomitant reduction of the change in DeltaPsim and PCD by cyclosporin A, which inhibits mitochondrial permeability transition pores in animal cells. DeltaPsim loss occurred prior to nuclear morphological changes and was only associated with mitochondrial cytochrome c release (an apoptotic trigger in animals) in response to one of three PCD elicitors. Three different stimuli in wild type implicated DeltaPsim changes in PCD: ceramide, protoporphyrin IX, and the hypersensitive response elicitor AvrRpt2. Additionally, the behavior of the conditional ectopic cell death mutant accelerated cell death2 and ACD2-overproducing plants also implicated DeltaPsim alteration as key for PCD execution. Because ACD2 is largely a chloroplast component in mature plants, the observation that the cell death in acd2 mutants requires changes in mitochondrial functions implicates communication between chloroplasts and mitochondria in mediating PCD activation. We suggest that DeltaPsim loss is a common early marker in plant PCD, similar to what has been documented in animals. However, unlike in animal cells, in plant cells, mitochondrial cytochrome c release is not an obligatory step in PCD control.  相似文献   

5.
Maturation of primary neuronal cultures is accompanied by an increase in the proportion of cells that exhibit biphasic increase in free cytoplasmic Ca2+ ([Ca2+]i) followed by synchronic decrease in electrical potential difference across the inner mitochondrial membrane (DeltaPsim) in response to stimulation of glutamate receptors. In the present study we have examined whether the appearance of the second phase of [Ca2+]i change can be attributed to arachidonic acid (AA) release in response to the effect of glutamate (Glu) on neurons. Using primary culture of rat cerebellar granule cells we have investigated the effect of AA (1-20 microM) on [Ca2+]i, DeltaPsim, and [ATP] and changes in these parameters induced by neurotoxic concentrations of Glu (100 microM, 10-40 min). At =10 microM, AA caused insignificant decrease in DeltaPsim without any influence on [Ca2+]i. The mitochondrial ATPase inhibitor oligomycin enhanced AA-induced decrease in DeltaPsim; this suggests that AA may inhibit mitochondrial respiration. Addition of AA during the treatment with Glu resulted in more pronounced augmentation of [Ca2+]i and the decrease in DeltaPsim than the changes in these parameters observed during independent action of AA; removal of Glu did not abolish these changes. An inhibitor of the cyclooxygenase and lipoxygenase pathways of AA metabolism, 5,8,11,14-eicosatetraynoic acid, increased the proportion of neurons characterized by Glu-induced biphasic increase in [Ca2+]i and the decrease in DeltaPsim. Palmitic acid (30 microM) did not increase the percentage of neurons exhibiting biphasic response to Glu. Co-administration of AA and Glu caused 2-3 times more pronounced decrease in ATP concentrations than that observed during the independent effect of AA and Glu. The data suggest that AA may influence the functional state of mitochondria, and these changes may promote biphasic [Ca2+]i and DeltaPsim responses of neurons to the neurotoxic effect of Glu.  相似文献   

6.
Defects in mitochondrial energy metabolism due to respiratory chain disorders lead to a decrease in mitochondrial membrane potential (DeltaPsim) and induce apoptosis. Since coenzyme Q10 (CoQ10) plays a dual role as an antioxidant and bioenergetic agent in the respiratory chain, it has attracted increasing attention concerning the prevention of apoptosis in mitochondrial diseases. In this study the potential of CoQ10 to antagonize the apoptosis-inducing effects of the respiratory chain inhibitor rotenone was explored by video-enhanced microscopy in SH-SY5Y neuroblastoma cells. The cationic fluorescent dye JC-1 which exhibits potential-dependent accumulation in mitochondria was used as an indicator to monitor changes in DeltaPsim. The relative changes in fluorescence intensity after incubation with rotenone for 15 minutes were calculated. Pre-treatment with CoQ10 (10 or 100 microM) for 48 h led to a significant reduction of rotenone-induced loss of DeltaPsim. These results suggest, that cytoprotection by CoQ10 may be mediated by raising cellular resistance against the initiating steps of apoptosis, namely the decrease of DeltaPsim. Whether these data may provide new directions for the development of neuroprotective strategies has to be investigated in future studies.  相似文献   

7.
The diabetic effects of alloxan (type I diabetes mellitus) were investigated in 40 Wistar albino rats (18 controls and 22 diabetics). Alloxan in sterile physiological saline was injected into animals intravenously. After the induction of diabetes with alloxan, the ultrastructure of the capillaries in the gingiva was examined by transmission electron microscopy. The thickness of the basement membranes was observed closely adherent to the endothelial cells of the capillary alloxan-diabetic rats. It was greatly thickened owing to the increase in its amorphous, granular and filamentous material with occasional scattered collagen fibres. In some sections, the capillary lumens of the diabetics were closed by epithelial cells. Loss of cytoplasmic material and hyalinization were seen in some smooth muscle cells. In addition, the mitochondrial cristae of smooth muscle cell and epithelial cells disappeared. There was endothelial integrity throughout the smooth muscle cells.  相似文献   

8.
We explored the role of low mitochondrial membrane potential (DeltaPsim) and the lack of oxidative phosphorylation in apoptosis by assessing the susceptibility of osteosarcoma cell lines with and without mitochondrial DNA to staurosporine-induced death. Our cells without mitochondrial DNA had low DeltaPsim and no functional oxidative phosphorylation. Contrary to our expectation, these cells were more resistant to staurosporine-induced death than were the parental cells. This reduced susceptibility was associated with decreased activation of caspase 3 but not with the mitochondrial permeability transition pore or cytochrome c release from the mitochondria. Apoptosis in both cell lines was associated with an increase in DeltaPsim. Bcl-x(L) could protect both cell types against caspase 3 activation and apoptosis by a mechanism that does not appear to be mediated by mitochondrial function or modulation of DeltaPsim. Nevertheless, we found that Bcl-x(L) expression can stimulate cell respiration in cells with mitochondrial DNA. Our results showed that the lack of functional oxidative phosphorylation and/or low mitochondrial membrane potential are associated with an antiapoptotic effect, possibly contributing to the development of some types of cancer. It also reinforces a model in which Bcl-x(L) can exert an antiapoptotic effect by stimulating oxidative phosphorylation and/or inhibiting caspase activation.  相似文献   

9.
The relationship between exercise-induced focal muscle fiber degeneration and changes in capillary morphology was investigated in male Wistar rats. Untrained animals ran on a treadmill for 1 h at submaximal intensity and were killed 0, 6, or 24 h after running. Nonexercised rats served as controls. In situ perfused soleus muscles were prepared for electron microscopy. Micrographed cross sections were quantitatively analyzed for parameters indicative of capillary blood flow or transcapillary exchange. Capillary lumina were ovally rather than circularly shaped, and no indications for obstruction of blood flow at the capillary level were found. Endothelial cells and their organelles had a normal appearance in all groups. However, immediately after exercise, capillaries showed a decreased thickness of their endothelium and basal membrane, probably caused by dehydration. Six hours after exercise, muscle fibers were swollen (28% increase in cross-sectional area), resulting in a slightly increased diffusion distance. This fiber swelling was not associated with an increase in muscle water content, a finding for which no explanation could be found. Twenty-four hours after the animals ran, capillaries located near degenerated muscle fibers had an increased cross-sectional luminal area and an increased luminal circumference. This effect decreased gradually with increasing distance from the degenerated fiber area. The present morphometric results do not support the hypothesis that changes in capillary morphology primarily contribute to exercise-induced focal muscle fiber degeneration.  相似文献   

10.
10-(2-pyrazolyl-ethoxy)-(20S)-camptothecin (CPT13) is a novel semi-synthetic analogue of camptothecin, our previous report had shown that it possessed higher in vitro cytoxicity activity towards human colon cancer HCT8 cell line than topotecan. In this study, the anti-proliferative effect of CPT13 on HCT8 cell line in vitro was analyzed. In order to further explore the underlying mechanism of cell growth inhibition of CPT13 towards HCT8 cell line, the cell cycle distribution, apoptosis proportion, the nuclei morphological changes and caspase-8 and caspase-3 activities were measured. Additionally the changes of mitochondrial morphology and membrane potential (DeltaPsim) were analyzed by atomic force microscopy (AFM) and flow cytometry, respectively. The results showed that CPT13 inhibited HCT8 cell growth by causing cell cycle arrest at G2/M transition and induced apoptosis, as evidenced by the typical apoptotic morphology such as condensation and fragmentation of nuclei and formation of apoptotic bodies. The changes of mitochondrial morphology, dose-dependently decrease in DeltaPsim and the enhancement of caspase-8 and caspase-3 activities were observed in different concentrations of drug treatment group. Our results suggest that CPT13 induces apoptosis by alternations of mitochondrial transmembrane depolarization, activation of caspase-8 and caspase-3. Therefore, CPT13 appears to be a potent drug against human colon cancer via induction of apoptosis and may be used as an alternative drug to therapy cancer.  相似文献   

11.
The canonical protein tyrosine phosphatase PTP1B is an important regulator of diverse cellular signaling networks. PTP1B has long been thought to exert its influence solely from its perch on the endoplasmic reticulum (ER); however, an additional subpopulation of PTP1B has recently been detected in mitochondria extracted from rat brain tissue. Here, we show that PTP1B’s mitochondrial localization is general (observed across diverse mammalian cell lines) and sensitively dependent on the transmembrane domain length, C-terminal charge and hydropathy of its short (≤35 amino acid) tail anchor. Our electron microscopy of specific DAB precipitation revealed that PTP1B localizes via its tail anchor to the outer mitochondrial membrane (OMM), with fluorescence lifetime imaging microscopy establishing that this OMM pool contributes to the previously reported cytoplasmic interaction of PTP1B with endocytosed epidermal growth factor receptor. We additionally examined the mechanism of PTP1B’s insertion into the ER membrane through heterologous expression of PTP1B’s tail anchor in wild-type yeast and yeast mutants of major conserved ER insertion pathways: In none of these yeast strains was ER targeting significantly impeded, providing in vivo support for the hypothesis of spontaneous membrane insertion (as previously demonstrated in vitro). Further functional elucidation of the newly recognized mitochondrial pool of PTP1B will likely be important for understanding its complex roles in cellular responses to external stimuli, cell proliferation and diseased states.  相似文献   

12.
Muscular contusions affect the function of the skeletal muscle system. This study investigated the oxidative damage as well as the main morphological changes related to a skeletal muscle contusion in the gastrocnemius muscle of rats and also the capacity of therapeutic cold to modulate these parameters. The therapeutic cold modulated the increase of oxidative stress markers and also modulated the reduction in the antioxidants levels in the injured muscle. In enzyme assays, therapeutic cold was also effective in normalizing the muscle Na(+)/K(+) and Ca(2+) ATPases, lactate dehydrogenase and myeloperoxidase activities. Similarly, the lesioned non-treated animals presented evident impairments in the mitochondrial functions and in the muscle morphology which were diminished by the cold treatment. The therapeutic cold was able to modulate the oxidative damage possibly by its capacity to limit the inflammatory response intensity, to attenuate the impairment of the mitochondrial function and also to preserve the skeletal muscle morphology.  相似文献   

13.
Increases inguanosine 3',5'-cyclic monophosphate (cGMP) induced bynitric oxide (NO), nitrovasodilators, and atrial peptides correlatewith relaxation of vascular smooth muscle. Relaxation of myometrialsmooth muscle by increases in cGMP, however, has required unusuallyhigh concentrations of the cyclic nucleotide. We tested the hypothesisthat the sensitivity of myometrium to relaxation by cGMP is increasedduring pregnancy. Aortic smooth muscle was more sensitive to relaxationby cGMP than myometrial tissues, and, contrary to our hypothesis,myometrium from pregnant rats was least sensitive. Although levels ofcGMP were elevated after treatment with the NO donor,S-nitroso-N-acetylpenicillamine, relaxation of myometrial tissues obtained from pregnant rats occurred only at extraordinarily high concentrations. The levels ofcGMP-dependent protein kinase (PKG) were significantly decreased inmyometrium from pregnant rats compared with myometrium from nonpregnantcycling animals or aortic smooth muscle. Administration of estradiol to ovariectomized rats increased myometrial PKG expression, andprogesterone antagonized this response. We conclude that1) myometrial tissues from pregnantrats are not sensitive to relaxation by cGMP and 2) this insensitivity to cGMP isaccompanied by progesterone-mediated decreases in the level of PKGexpression.

  相似文献   

14.
Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 h later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies.  相似文献   

15.
By means of electron microscopy and observational histological techniques, using a similar experimental model, regeneration of the striated and smooth muscle tissues of the esophagus has been studied in rats. During early periods after lesion in both muscle tissues destructive-necrotic changes develop. Beginning from the 2nd-3d days regeneration processes are observed. The course and periodicity of the regenerative processes are specific for the types of the muscle tissues studied. Each of the muscle tissues of the esophagus has its own source of regeneration. For the smooth muscles those are myoblasts, that convert into smooth myocytes, for the striated ones--myosatellites, which after activation get out of the muscle fiber. During the restorative process of the muscular membrane no tissue interconnections are observed. This also proves certain specificity of the striated and smooth muscle tissues of the esophagus.  相似文献   

16.
Mitochondria regulate cellular bioenergetics and apoptosis and have been implicated in aging. However, it remains unclear whether age‐related loss of muscle mass, known as sarcopenia, is associated with abnormal mitochondrial function. Two technically different approaches have mainly been used to measure mitochondrial function: isolated mitochondria and permeabilized myofiber bundles, but the reliability of these measures in the context of sarcopenia has not been systematically assessed before. A key difference between these approaches is that contrary to isolated mitochondria, permeabilized bundles contain the totality of fiber mitochondria where normal mitochondrial morphology and intracellular interactions are preserved. Using the gastrocnemius muscle from young adult and senescent rats, we show marked effects of aging on three primary indices of mitochondrial function (respiration, H2O2 emission, sensitivity of permeability transition pore to Ca2+) when measured in isolated mitochondria, but to a much lesser degree when measured in permeabilized bundles. Our results clearly demonstrate that mitochondrial isolation procedures typically employed to study aged muscles expose functional impairments not seen in situ. We conclude that aging is associated with more modest changes in mitochondrial function in sarcopenic muscle than suggested previously from isolated organelle studies.  相似文献   

17.
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.  相似文献   

18.
Irradiation increases superoxide dismutase in rat intestinal smooth muscle   总被引:1,自引:0,他引:1  
We investigated whether X-irradiation could induce the enzyme superoxide dismutase (SOD) in intestinal muscle. Groups of rats received abdominal irradiation and the time course and dose response for SOD activity determined. Jejunal smooth muscle homogenates were analyzed for the activities of copper/zinc (CuZn) and manganese (Mn) SOD activity and for a mitochondrial marker enzyme, citrate synthase. A progressive rise in Mn SOD activity occurred at 20, 46, and 72 h after 1500 R. No significant changes in Cu-Zn SOD activity occurred at any time after 1500 R. At 20 h after 250 R of X-irradiation, Mn SOD activity increased but no further increase occurred at higher irradiation exposures. At the same time, CuZn SOD activity at 20 h after irradiation was greater than controls only at an exposure of 1000 R (p less than 0.05). Using Western blotting, we were able to clearly demonstrate an increase in immunoreactive Mn SOD protein in muscle samples 20 h after 1500 R. The rise in Mn SOD is not simply due to increase in mitochondrial numbers or increase in all mitochondrial enzyme activities because activity of the mitochondrial marker enzyme citrate synthase was decreased after X-irradiation. Transmission electron microscopic studies demonstrated damage to mitochondria after a dose of 3000 R. The data yield evidence that free radicals play a role in irradiation-induced intestinal smooth muscle injury.  相似文献   

19.
The cellular mechanisms that contribute to the acceleration of atherosclerosis in aging populations are poorly understood, although it is hypothesized that changes in the proliferative capacity of vascular smooth muscle cells is contributory. We addressed the relationship among aging, generation of reactive oxygen species (ROS), and proliferation in primary culture smooth muscle cells (SMC) derived from the aortas of young (4 mo old) and aged (16 mo old) mice to understand the phenotypic modulation of these cells as aging occurs. SMC from aged mice had decreased proliferative capacity in response to alpha-thrombin stimulation, yet generated higher levels of ROS and had constitutively increased mitogen-activated protein kinase activity, in comparison with cells from younger mice. These effects may be explained by dysregulation of cell cycle-associated proteins such as cyclin D1 and p27Kip1 in SMC from aged mice. Increased ROS generation was associated with decreased endogenous antioxidant activity, increased lipid peroxidation, and mitochondrial DNA damage. Accrual of oxidant-induced damage and decreased proliferative capacity in SMC may explain, in part, the age-associated transition to plaque instability in humans with atherosclerosis.  相似文献   

20.
The regulation of cytosolic Ca(2+) homeostasis is essential for cells, including vascular smooth muscle cells. Arterial tone, which underlies the maintenance of peripheral resistance in the circulation, is a major contributor to the control of blood pressure. Confocal microscopy was employed to study the alteration in intracellular calcium ion concentration ([Ca(2+)](i)) in arterioles (external diameters <100 microm) with respect to selected modifying reagents. 5-Hydroxytryptamine (1 microM), ATP (10 microM), and endothelin 1-3 (5 nM) elicited an increase in [Ca(2+)](i) in most arteriole smooth muscle cells. The [Ca(2+)](i) increase sometimes propagated in an intercellular manner. When noradrenaline (10 microM) was used as a stimulant, [Ca(2+)](i) increase was observed only in a portion of the smooth muscle cells. It was also noted that the reaction of these cells with respect to ATP is different between testis and brain arterioles; the [Ca(2+)](i) increase in testicular arterioles is dependent on Ca(2+) influx from extracellular space, whereas in cerebral arterioles it plays a role in both the influx of extracellular Ca(2+) and the release of Ca(2+) from intracellular stores (i.e., sarco/endoplasmic reticulum). These results indicate that arterioles in different tissues may differ greatly in their responses. Real-time confocal microscopy was found to be a useful tool for investigating the structural and functional changes in living tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号