首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The intermediate filament (IF) composition of muscle cells of various sources is still a controversial issue. In the present study, the IF composition of bovine Purkinje fibres (PFs), atrial and ventricular myocardium, and gastric smooth muscle (SM) has been compared using biochemical and immunocytochemical methods. The Mr of the major IF subunit protein in all four tissues was 55,000. In two-dimensional (2-D) electrophoresis gels of Triton-treated ordinary atrial and ventricular myocardium and the gastric muscular wall, two or three isoelectric isoforms were seen, whereas in PFs up to seven isoforms caused by phosphorylation were observed. In immunofluorescence studies antibodies against the Mr 55,000 subunit of PFs and gastric SM, respectively, both showed identical reactivity with PFs, atrial and ventricular myocytes, gastric SM cells and some SM cells in intramyocardial and gastric muscular wall blood vessels. A small amount of vimentin (Mr 57,000) was also detected in 2-D gel electrophoresis in all four tissues as well as in immunoblotting of PFs with antibodies to vimentin. Immunofluorescence studies using both polyclonal and monoclonal antibodies to vimentin showed that vimentin was present in the endothelium and SM cells of both intramyocardial and gastric muscular wall vessels, sometimes together with desmin in the vascular SM cells, but was never seen in PF, atrial, ventricular or gastric SM cells proper. As expected, vimentin was present in interstitial tissue, i.e., fibroblasts and capillaries. However, interestingly, the monoclonal antibodies, which recognized different antigenic determinants of vimentin, did not give identical staining patterns. Especially the staining of the vascular SM cells differed. Since this staining pattern did not change upon denaturation and unmasking experiments, it seems that the organization of vimentin in different mesenchymal cell types varies. Vimentin was also detected in isolated PFs but here it was located solely in the contaminating interstitial tissue. Thus, desmin is the sole IF protein expressed in PFs, in atrial and ventricular myocytes and in gastric SM cells proper; vimentin alone being present in the interstitial tissue cells, whilst in vascular SM cells desmin and vimentin are coexpressed in various proportions. The variation in number of isoforms of desmin and the heterogeneity in staining of mesenchymal tissues with monoclonal vimentin antibodies probably indicates that the IF cytoskeletons are differently organized in various cell types, even though they contain IFs of the same class.  相似文献   

2.
The display of the two distinct intermediate filament proteins, desmin and vimentin, in rat vascular smooth muscle tissue was studied by immunofluorescence microscopy on frozen sections of aorta and other blood vessels. Vascular smooth muscle cells present in these vessels always appeared rich in vimentin. However, staining of sections covering six distinct but contiguous parts of the aorta showed that the number of desmin containing cells was low distal to the truncus brachiocephalicus, but increases until in distal parts of the aorta and in the arteria iliaca communis almost all cells appear positive for desmin. Thus blood vessels show heterogeneity of intermediate filament expression not only in cross-section but can also display heterogeneity along their length. Muscular arteries such as the renal artery and the arteria femoralis, as well as arterioles and veins including the vena jugularis and the vena cava also contain desmin. Thus it may be that low numbers of desmin-positive cells are typical of elastic arteries, while muscular arteries and other blood vessels are characterized by large numbers of desmin-positive cells. We discuss whether desmin-positive and desmin-negative vascular smooth muscle cells may perform different functions and raise the possibility that desmin expression may coincide with the turn on of a specially regulated contractility program.  相似文献   

3.
Remodeling of the primary vascular system of the embryo into arteries and veins has long been thought to depend largely on the influence of hemodynamic forces. This view was recently challenged by the discovery of several molecules specifically expressed by arterial or venous endothelial cells. We here analysed the expression of neuropilin-1 and TIE2, two transmembrane receptors known to play a role in vascular development. In birds, neuropilin-1 was expressed by arterial endothelium and wall cells, but absent from veins. TIE2 was strongly expressed in embryonic veins, but only weakly transcribed in most arteries. To examine whether endothelial cells are committed to an arterial or venous fate once they express these specific receptors, we constructed quail-chick chimeras. The dorsal aorta, carotid artery and the cardinal and jugular veins were isolated together with the vessel wall from quail embryos between embryonic day 2 to 15 and grafted into the coelom of chick hosts. Until embryonic day 7, all grafts yielded endothelial cells that colonized both host arteries and veins. After embryonic day 7, endothelial plasticity was progressively lost and from embryonic day 11 grafts of arteries yielded endothelial cells that colonized only chick arteries and rarely reached the host veins, while grafts of jugular veins colonized mainly host veins. When isolated from the vessel wall, quail aortic endothelial cells from embryonic day 11 embryos were able to colonize both host arteries and veins. Our results show that despite the expression of arterial or venous markers the endothelium remains plastic with regard to arterial-venous differentiation until late in embryonic development and point to a role for the vessel wall in endothelial plasticity and vessel identity.  相似文献   

4.
Immunocytochemistry of eye lens cells from transgenic mice coexpressing desmin and vimentin reveals that the transgenic desmin expression is not uniform. In the same lens, some epithelial and fiber cells overexpress desmin, while in others the desmin gene seems to be silent. Conversely, the endogenous vimentin is always expressed. The concomitant expression of vimentin and desmin results in the assembly of hybrid intermediate filaments (IFs). Moreover, the overexpression of the transgene generates pleomorphic IF assembly and leads to intermingled filamentous whorls and to accumulation of amorphous desmin. The abnormalities of IF assembly induced by the genetic manipulation are correlated with perturbation of the enucleation process in the lens fibers, changes in cell shape, fiber fusion and extensive internalization of the general plasma membrane and junctional domains. The alterations of lens cells described in this study were observed in all transgenic mice examined. The level of expression of the transgene was paralleled by the degree of damage. Our results indicate that proper expression, assembly and membrane interaction of IFs play an important role in the terminal differentiation of the lenticular epithelium into fiber cells. We anticipate that alterations during these processes may initiate cataract formation.  相似文献   

5.
Summary Two main populations of smooth muscle cells exist in the arterial media of adult mammals with respect to expression of two intermediate filament proteins: vimentin-positive/desmin-negative cells (V+/D-) and vimentin-positive/desmin-positive ones (V+/D+). However, it is still not understood how this phenotypic diversity is established. Since the proportion and the distribution patterns of the two muscle cell populations depend both on the type of blood vessel and the species examined, the aim of the present study was to determine and to compare their developmental origin in various artery segments from two different species. Using confocal scanning laser microscopy and sections stained by means of immunofluorescence, the distribution patterns of desmin and vimentin were compared in transverse sections of thoracic and abdominal aortas (elastic arteries) and of the femoral artery (muscular artery) of newborn and adult rats (n=12) and rabbits (n=12). The comparison of sections labelled with specific antibodies showed the existence of a subpopulation of smooth muscle cells in the aortas, but not in the femoral artery which expressed desmin in newborns but not in adults. These data suggest that the phenotype of smooth muscle cells in elastic arteries but not in muscular arteries is modulated during development.  相似文献   

6.
目的通过高脂喂养兔制造动脉粥样硬化动物模型,研究G-CSF对不同动脉段内皮形态和功能变化的影响及相互关系。方法30只新西兰成年雄兔随机分4组,分为对照组6只,高脂喂养组、普通及高脂喂养+G-CSF组各8只,分别测定血脂及血清NO浓度,各取胸主动脉、颈总动脉、股动脉,采用病理分析及扫描电镜观察内皮形态的不同变化,同时用RT-PCR方法测定eNOS、ET-1基因的表达了解不同动脉段的内皮功能变化。结果高脂喂养后兔血脂、NO浓度明显升高,病理发现动脉内膜增厚,以大动脉最著,小动脉最次,扫描电镜下内皮细胞的凋亡、变形亦然。ET-1基因表达相对定量次序为胸主动脉〉颈总动脉〉股动脉,eNOS基因反之。应用G-CSF后大动脉内皮功能及形态受到明显影响,但小型动脉变化不大。结论高脂喂养兔能成功制造动脉粥样硬化模型,成模后动脉内皮功能显著受损,其中以大型动脉显著,同时内皮形态出现相应变化。应用G-CSF对全身动脉系统有影响,且动脉越小,影响越小,说明粥样硬化动脉内皮形态与功能改变之间存在必然联系,对G-CSF的反应也不同。  相似文献   

7.
Synemin is a cytoskeletal protein originally identified as an intermediate filament (IF)-associated protein because of its colocalization and copurification with the IF proteins desmin and vimentin in muscle cells. Our sequencing studies have shown that synemin is an unusually large member (1,604 residues, 182,187 Da) of the IF protein superfamily, with the majority of the molecule consisting of a long C-terminal tail domain. Molecular interaction studies demonstrate that purified synemin interacts with desmin, the major IF protein in mature muscle cells, and with alpha-actinin, an integral myofibrillar Z-line protein. Furthermore, expressed synemin rod and tail domains interact, respectively, with desmin and alpha-actinin. Analysis of endogenous protein expression in SW13 clonal lines reveals that synemin is coexpressed and colocalized with vimentin IFs in SW13.C1 vim+ cells but is absent in SW13.C2 vim- cells. Transfection studies indicate that synemin requires the presence of another IF protein, such as vimentin, in order to assemble into IFs. Taken in toto, our results suggest synemin functions as a component of heteropolymeric IFs and plays an important cytoskeletal cross-linking role by linking these IFs to other components of the cytoskeleton. Synemin in striated muscle cells may enable these heterofilaments to help link Z-lines of adjacent myofibrils and, thereby, play an important role in cytoskeletal integrity.  相似文献   

8.
In most myogenic systems, synthesis of the intermediate filament (IF) protein vimentin precedes the synthesis of the muscle-specific IF protein desmin. In the dorsal myotome of the Xenopus embryo, however, there is no preexisting vimentin filament system and desmin's initial organization is quite different from that seen in vimentin-containing myocytes (Cary and Klymkowsky, 1994. Differentiation. In press.). To determine whether the organization of IFs in the Xenopus myotome reflects features unique to Xenopus or is due to specific properties of desmin, we used the injection of plasmid DNA to drive the synthesis of vimentin or desmin in myotomal cells. At low levels of accumulation, exogenous vimentin and desmin both enter into the endogenous desmin system of the myotomal cell. At higher levels exogenous vimentin forms longitudinal IF systems similar to those seen in vimentin-expressing myogenic systems and massive IF bundles. Exogenous desmin, on the other hand, formed a reticular IF meshwork and non-filamentous aggregates. In embryonic epithelial cells, both vimentin and desmin formed extended IF networks. Vimentin and desmin differ most dramatically in their NH2- terminal "head" regions. To determine whether the head region was responsible for the differences in the behavior of these two proteins, we constructed plasmids encoding chimeric proteins in which the head of one was attached to the body of the other. In muscle, the vimentin head- desmin body (VDD) polypeptide formed longitudinal IFs and massive IF bundles like vimentin. The desmin head-vimentin body (DVV) polypeptide, on the other hand, formed IF meshworks and non-filamentous structures like desmin. In embryonic epithelial cells DVV formed a discrete filament network while VDD did not. Based on the behavior of these chimeric proteins, we conclude that the head domains of vimentin and desmin are structurally distinct and not interchangeable, and that the head domain of desmin is largely responsible for desmin's muscle- specific behaviors.  相似文献   

9.
An expression vector was prepared containing a cDNA coding for a truncated version of the intermediate filament (IF) protein desmin. The encoded truncated desmin protein lacks a portion of the highly conserved alpha-helical rod region as well as the entire nonhelical carboxy-terminal domain. When transiently expressed in primary fibroblasts, or in differentiating postmitotic myoblasts and multinucleated myotubes, the truncated protein induces the complete dismantling of the preexisting vimentin or desmin/vimentin IF networks, respectively. Instead, in both cell types vimentin and desmin are packaged into hybrid spheroid bodies scattered throughout the cytoplasm. Despite the complete lack of intact IFs, myoblasts and myotubes expressing truncated desmin assemble and laterally align normal striated myofibrils and contract spontaneously in a manner indistinguishable from that of control myogenic cells. In older cultures the spheroid bodies shift from a longitudinal to a predominantly transverse orientation and loosely align along the I-Z-I-regions of striated myofibrils (Bennett, G.S., S. Fellini, Y. Toyama, and H. Holtzer. 1979. J. Cell Biol. 82:577-584), analogous to the translocation of intact desmin/vimentin IFs in control muscle. These results suggest the need for a critical reexamination of currently held concepts regarding the functions of desmin IFs during myogenesis.  相似文献   

10.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

11.
Cytoskeletal proteins play important roles in regulating cellular morphology, cytokinesis and intracellular signaling. In this report, we describe a developmentally regulated gene encoding a novel cell lineage-restricted cytoskeletal protein, designated SM22beta. SM22beta shares high-grade sequence identity with the smooth muscle cell (SMC)-specific protein, SM22alpha, the neuron-specific protein, NP25, and the Drosophila melanogaster flight muscle-specific protein, mp20. The mouse SM22beta cDNA encodes a 199-amino acid polypeptide that contains a single conserved calponin-like repeat domain. During mouse embryonic development, the SM22beta gene is expressed in a temporally and spatially regulated pattern in the tunica media of arteries and veins, endocardium and compact layer of the myocardium, bronchial epithelium and mesenchyme of the lung, gastrointestinal epithelium and cartilaginous primordia. During postnatal development, SM22beta is co-expressed with SM22alpha in arterial and venous SMCs. In addition, SM22beta is expressed at high levels in the bronchial epithelium and lung mesenchyme, gastrointestinal epithelial cells and in the cartilagenous and periosteal layer of bones. Three-dimensional deconvolution microscopic analyses of A7r5 SMCs revealed that SM22beta co-localizes with SM22alpha to cytoskeletal actin filaments. Taken together, these data demonstrate that SM22beta is a novel actin-associated protein with a unique cell lineage-restricted pattern of expression.  相似文献   

12.
An increase in intermediate filaments has been reported in rat uterine stromal cells undergoing decidualization in vivo and in vitro. In order to identify biochemical correlates of this morphological change, we have identified (two dimensional gel electrophoresis, Western blots, indirect immunofluorescent staining) the constitutive intermediate filament proteins of stromal cells decidualizing in vivo and isolated stroma decidualizing in vitro as vimentin and desmin. Vimentin is common to all uterine stromal cells but increases, proportional to total cell protein, in decidualized stroma. Barely detectable in nondecidualized stroma, desmin, unlike vimentin, increases during decidualization at a rate greater than the increase in total cell protein. Neither the increase in vimentin or desmin is observed in hormonally sensitized, nondecidual stromal cells. Desmin, because it is selectively expressed in decidualizing stroma, could be considered unique enough to serve as a marker of decidual cell differentiation.  相似文献   

13.
The desmin gene encodes an intermediate filament protein that is present in skeletal, cardiac, and smooth muscle cells. This study shows that the 4-kb upstream region of the murine desmin promoter directs expression of a lacZ reporter gene throughout the heart from E7.5 and in skeletal muscle and vascular smooth muscle cells from E9. 5. The distal fragment (-4005/-2495) is active in arterial smooth muscle cells but not in venous smooth muscle cells or in the heart in vivo. It contains a CArG/octamer overlapping element (designated CArG4) that can bind the serum response factor (SRF) and an Oct-like factor. The desmin distal fragment can replace a SM22alpha regulatory region (-445/-126) that contains two CArG boxes, to cis-activate a minimal (-125/+65) SM22alpha promoter fragment in arterial smooth muscle cells of transgenic embryos. lacZ expression was abolished when mutations were introduced into the desmin CArG4 element that abolished the binding of SRF and/or Oct-like factor. These data suggest that a new type of combined CArG/octamer element plays a prominent role in the regulation of the desmin gene in arterial smooth muscle cells, and SRF and Oct-like factor could cooperate to drive specific expression in these cells.  相似文献   

14.
The expression of two intermediate filament-associated proteins, paranemin (280,000 mol wt) and synemin (230,000 mol wt), was investigated with respect to the expression of two core intermediate filament proteins, desmin and vimentin, in various embryonic and adult chicken muscle and nonmuscle cells. All developing muscle cells, regardless of their type, simultaneously express desmin, vimentin, paranemin, and synemin. However, a difference is observed in the expression of paranemin in adult muscle. This protein is removed during differentiation of both fast and slow skeletal muscle, visceral smooth muscle, and the smooth muscle of muscular arteries, but remains in mature myocardial cells, cardiac conducting fibers, and the smooth muscle cells of elastic arteries. Some of these cells express vimentin, others desmin, and still others a mixture of the two. On the other hand, synemin is expressed in all the above types of adult muscle cells except myocardial cells. Adult myocardial cells also lack vimentin, and its presence is gradually reduced after hatching. Since in adult striated muscle all expressed intermediate filament proteins are found predominantly in association with the peripheries of myofibrillar Z discs, these results suggest that a change in the composition of skeletal and cardiac muscle Z discs occurs during chicken development and maturation. Erythrocytes that express synemin and vimentin do not express paranemin, while both embryonic and adult Schwann cells co- express paranemin and vimentin, but not synemin. Endothelial cells of muscular vessels express paranemin, while those of elastic vessels do not, and neither contains synemin. Paranemin and synemin are not expressed in neurons, epithelial, and most glial cells, suggesting that these two polypeptides are expressed only in conjunction with desmin or vimentin. These results suggest that the composition of intermediate filaments changes during chicken development, not only with respect to their core subunit proteins but also with respect to two associated polypeptides, particularly in muscle cells.  相似文献   

15.
16.
Antibodies raised against chicken gizzard smooth muscle desmin were shown to be specific by immunofluorescence cytochemistry and immunoautoradiography after two-dimensional polyacrylamide gel electrophoresis. Embryonic chick heart cell cultures (permeabilized with Triton X-100) and enucleated adult chicken erythrocyte ghosts (Granger, B. L., E. A. Rapasky, and E. Lazarides, 1982, J. Cell Biol. 92:299-312) were then used for immunoelectronmicroscopic localization of desmin. As expected, all intermediate filaments (IF) of the cardiac myocytes were labeled heavily and uniformly with the desmin antibodies. No periodicity or helicity was detectable along the labeled IF. Of interest was the intermittent but clear labeling of the IF of the nonmuscle, fibroblastic cells in the identical cultures. These antibodies did not bind vimentin from embryonic chick heart homogenates; furthermore, they did not label IF of avian erythrocytes known to contain vimentin but not desmin. We conclude that IF of cardiac fibroblastic cells contain low, but significant, concentrations of desmin and that this protein probably forms a copolymer with vimentin in these cells.  相似文献   

17.
《The Journal of cell biology》1984,98(3):1072-1081
Desmosomal proteins are co-expressed with intermediate-sized filaments (IF) of the cytokeratin type in epithelial cells, and these IF are firmly attached to the desmosomal plaque. In meningiomal and certain arachnoidal cells, however, vimentin IF are attached to desmosomal plaques. Meningiomas obtained after surgery, arachnoid "membranes", and arachnoid granulations at autopsy, as well as meningiomal cells grown in short-term culture have been examined by single and double immunofluorescence and immunoelectron microscopy using antibodies to desmoplakins, vimentin, cytokeratins, glial filament protein, neurofilament protein, and procollagen. In addition, two-dimensional gel electrophoresis of the cytoskeletal proteins has been performed. Using all of these techniques, vimentin was the only IF protein that was detected in significant amounts. The junctions morphologically resembling desmosomes of epithelial cells have been identified as true desmosomes by antibodies specific for desmoplakins and they provided the membrane attachment sites for the vimentin IF. These findings show that anchorage of IF to the cell surface at desmosomal plaques is not restricted to cytokeratin IF as in epithelial cells and desmin IF as in cardiac myocytes, suggesting that binding to desmosomes and hemidesmosomes is a more common feature of IF organization. The co- expression of desmosomal proteins and IF of the vimentin type only defines a new class of cell ("desmofibrocyte") and may also provide an important histodiagnostic criterion.  相似文献   

18.
Desmin and titin expression in early postimplantation mouse embryos   总被引:7,自引:0,他引:7  
The expression of the intermediate filament (IF) constituents desmin, vimentin and keratin, as well as the striated-muscle-specific marker titin, was studied in mouse embryos of 8.0 to 9.5 days post coitum (d.p.c.), using the indirect immunofluorescence technique in combination with polyclonal and monoclonal antibodies. During the development of the embryo, desmin was first detected at 8.25 d.p.c. in the ectoderm, where it was transiently coexpressed with keratin and vimentin. At later stages, the ectoderm contained only keratin and to a certain extent also vimentin IF. At 8.5 d.p.c., desmin was found exclusively in the heart rudiment, and remained present with increasing intensity in the myocardial cells during later cardiogenesis. Striation of desmin in the heart muscle cells was observed in 9.5 d.p.c. embryos. At these stages (8.5-9.5 d.p.c.), triple expression of the IF proteins desmin, vimentin and keratin was evident in these cells. From 9.0 d.p.c. onwards, desmin could be detected in the myotomes as well. Immunoblotting studies of 9.5 d.p.c. mouse embryos confirmed the immunohistochemical data. Titin was found in the early heart anlage at stage 8.25 d.p.c., when no desmin expression was observed in this tissue. At this stage the titin appeared in a punctate pattern, similar to that observed in cardiac myofibrils of early chicken embryos (Tokuyasu and Maher, 1987; J. Cell Biol. 105, 2781-2793). In 8.5 d.p.c. mouse embryos, this punctate titin staining pattern was still observed, while, at this stage, a filamentous staining reaction could be seen with the desmin antibodies. During further development, cross-striation was detected within myocardial cells using the polyclonal titin antibody from 9.0 d.p.c. onwards, i.e. before such striation could be detected with the desmin antibodies. From these data, we conclude that titin synthesis may anticipate desmin expression in the developing mouse myocard, although the level of expression of the former protein remains low until 9.0 d.p.c.  相似文献   

19.
 We have studied the phenotypic changes in regenerating smooth muscle (SM) tissue of detrusor muscle after local application of a necrotizing, freeze–thaw injury to the serosal surface of rabbit bladder. Bromo-deoxyuridine (BrdU) incorporation and immunofluorescence studies were performed on bladder cryosections from day 2 up to day 15 after surgery with monoclonal antibodies specific for some cytoskeletal markers [desmin, vimentin, non-muscle (NM) myosin] and for SM-specific proteins (α-actin, myosin, and SM22). Four days after lesion, some clls incorporated in regenerating SM bundles are BrdU positive, but all display a phenotypic pattern identical to that of the interstitial, highly proliferating cells, i.e., expression of vimentin. By days 7–15 the differentiation profile of regenerating SM returns to that of uninjured SM tissue (appearance of desmin, SM-type α-actin, and SM myosin). A chemical denervation achieved by 6-hydroxydopamine treatment for 2 weeks induces the formation of vimentin/SM α-actin/NM myosin/SM22-containing myofibroblasts in the interstitial, fibroblast-like cells of uninjured bladder. In the bladder wall, alteration of reinnervation during the regenerating SM process produces: (1) in the outer region, the activation of vimentin/SM α-actin/desmin myofibroblasts in the de novo SM cell bundles; and (2) in the inner region of bladder, including the muscularis mucosae, the formation of proliferating, fully differentiated SM cells peripherally to newly formed SM cell bundles. These findings suggest that: (1) the de novo SM tissue formation in the bladder can occur via incorporation of interstitial cells into growing SM bundles; and (2) the alteration of reinnervation during the regenerating process induces a spatial-specific differentiation of interstitial myofibroblasts in SM cells before SM cell bundling. Accepted: 14 May 1997  相似文献   

20.
The contribution of the intermediate filament (IF) network to the mechanical response of cells has so far received little attention, possibly because the assembly and regulation of IFs are not as well understood as that of the actin cytoskeleton or of microtubules. The mechanical role of IFs has been mostly inferred from measurements performed on individual filaments or gels in vitro. In this study we employ atomic force microscopy (AFM) to examine the contribution of vimentin IFs to the nanomechanical properties of living cells under native conditions. To specifically target and modulate the vimentin network, Rat-2 fibroblasts were transfected with GFP-desmin variants. Cells expressing desmin variants were identified by the fluorescence microscopy extension of the AFM instrument. This allowed us to directly compare the nanomechanical response of transfected and untransfected cells at high spatial resolution by means of AFM. Depending on the variant desmin, transfectants were either softer or stiffer than untransfected fibroblasts. Expression of the non-filament forming GFP-DesL345P mutant led to a collapse of the endogenous vimentin network in the perinuclear region that was accompanied by localized stiffening. Correlative confocal microscopy indicates that the expression of desmin variants specifically targets the endogenous vimentin IF network without major rearrangements of other cytoskeletal components. By measuring functional changes caused by IF rearrangements in intact cells, we show that IFs play a crucial role in mechanical behavior not only at large deformations but also in the nanomechanical response of individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号