首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Streptomyces lividans IAF18, obtained by homologous cloning, is capable of over-producing XlnA. To investigate the possibility of the expression of foreign genes, various coding regions of the xylanase A gene (xlnA) were analysed. Expression/secretion vectors were constructed containing the regulatory elements of xlnA with the coding region of the leader peptide with or without the truncated structural gene encoding the first 310 amino acids of the XlnA. The genes coding for the Escherichia coliβ-glucuronidase and subunit 1 of the Bordetella pertussis toxin (S1) were used and their expression analysed. S. lividans transformants where the β-glucuronidase gene was fused with the leader sequence produced up to 30 mg β-glucuronidase/culture filtrate whereas only fused XlnA/S1 was detected and its yield was estimated to be 1 mg/l. The disappearence of the B. pertussis toxin S1 and β-glucuronidase from the culture medium was due to the concomitant appearence of secreted proteases from S. lividans. Received: 19 July 1995/Received revision: 3 November 1995/Accepted: 20 November 1995  相似文献   

2.
The stability and specific activity of endo-β-1,4-glucanase III from Trichoderma reesei QM9414 was enhanced, and the expression efficiency of its encoding gene, egl3, was optimized by directed evolution using error-prone PCR and activity screening in Escherichia coli RosettaBlue (DE3) pLacI as a host. Relationship between increase in yield of active enzyme in the clones and improvement in its stability was observed among the mutants obtained in the present study. The clone harboring the best mutant 2R4 (G41E/T110P/K173M/Y195F/P201S/N218I) selected in via second-round mutagenesis after optimal recombinating of first-round mutations produced 130-fold higher amount of mutant enzyme than the transformant with wild-type EG III. Mutant 2R4 produced by the clone showed broad pH stability (4.4–8.8) and thermotolerance (entirely active at 55°C for 30 min) compared with those of the wild-type EG III (pH stability, 4.4–5.2; thermostability, inactive at 55°C for 30 min). k cat of 2R4 against carboxymethyl-cellulose was about 1.4-fold higher than that of the wild type, though the K m became twice of that of the wild type.  相似文献   

3.
Wild-type cmFDH contains no cystines, hence it is a good candidate to test the hypothesis that thermostability can be achieved by introducing new disulphide bridges. Three cysteine double mutants of cmFDH were designed, using a homology model reported previously, to introduce cystine bridges in the C-domain (T169C–T226C) in the N-domain (V88C–V112C) and between the two monomers (M156C–L159C) to form two cystine bridges across the dimer interface. These mutants were constructed and the proteins were over-expressed in E. coli. The mutants V88C–V112C and M156C–L159C lost FDH activity. The mutant T169C–T226C was both less active and less thermostable than wild-type FDH.  相似文献   

4.
The recombinant Bordetella pertussis CyaA pore-forming (CyaA-PF) fragment was previously shown to be expressed separately in Escherichia coli as a soluble precursor that can be in vivo palmitoylated to exert haemolytic activity. In this study, PCR-based mutagenesis was employed to investigate the contributions to haemolysis of five predicted helices within the N-terminal hydrophobic region of the CyaA-PF fragment. Single proline substitutions were made for alanine near the centre of each predicted helix as a means of disrupting local secondary structure. All mutant proteins were over-expressed in E. coli as a 126-kDa soluble protein at levels comparable to the wild-type. Marked reductions in haemolytic activity against sheep erythrocytes of mutants, A510P, A538P, A583P and A687P pertaining to the putative helices 1500–522, 2529–550, 3571–593 and 5678–698, respectively, were observed. However, a slight decrease in haemolytic activity was found for the proline replacement in the predicted helix 4602–627 (A616P). MALDI–TOF–MS and LC–MS–MS analyses verified the palmitoylation at Lys983 of all five mutants as identical to that of the CyaA-PF wild-type protein, indicating that toxin modification via this acylation was not affected by the mutations. Altogether, these results suggest that structural integrity of the predicted helices 1, 2, 3 and 5, but not helix 4, is important for haemolytic activity, particularly for the putative transmembrane helices 2 and 3 that might conceivably be involved in pore formation of the CyaA-PF fragment.  相似文献   

5.
A bacterial artificial chromosomal library of Nonomuraea sp. ATCC39727 was constructed using Escherichia coliStreptomyces artificial chromosome (ESAC) and screened for the presence of dbv genes known to be involved in the biosynthesis of the glycopeptide A40926. dbv genes were cloned as two large, partially overlapping, fragments and transferred into the host Streptomyces lividans, thus generating strains S. lividans∷NmESAC50 and S. lividans∷NmESAC57. The heterologous expression of Nonomuraea genes in S. lividans was successfully demonstrated by using combined RT–PCR and proteomic approaches. MALDI-TOF analysis revealed that a Nonomuraea ABC transporter is expressed as two isoforms in S. lividans. Moreover, its expression may not require a Nonomuraea positive regulator at all, as it is present at similar levels in both clones even though S. lividans∷NmESAC57 lacks regulatory genes. Considered together, these results show that S. lividans expresses Nonomuraea genes from their own promoters and support the idea that S. lividans can be a good host for genetic analysis of Nonomuraea.  相似文献   

6.
We have described a procedure for the isolation of mutants of Tetrahymena thermophila with hyperscretion of phospholipase A1 (PLA1). Using random chemical mutagenesis, uniparental cytogamy, genetic crossing and a new, fast and effective screening procedure, four PLA1-hypersecretory mutants were isolated. The screening procedure is based on the formation of a halo appearing around cylindrical holes in a lecithin-containing agar plate filled with cell-free supernatants. About 3,940 clones were tested with this procedure in primary screening for hypersecretory features, of which 60 putative hypersecretory mutants were isolated, subcloned and tested in a secondary screening. Of these, four selected mutants showed 1.8–2.2 more PLA1 activity in the cell-free supernatants compared to the wild-type strain CU 438.1. Hypersecretion was only observable for PLA1; no increased activity for two other lysosomal enzymes could be detected. These hypersecretory mutants of T. thermophila can be very useful for increasing the yield of PLA1 in fermentation processes. This is particularly relevant because, in contrast to other phospholipases, PLA1 is not available on the commercial market for fine chemicals and little is known about the role of PLA1 in cell signaling and metabolism. Received: 27 January 2000 / Received revision: 10 April 2000 / Accepted: 14 April 2000  相似文献   

7.
8.
LadA, a monooxygenase catalyzing the oxidation of n-alkanes to 1-alkanols, is the key enzyme for the degradation of long-chain alkanes (C15–C36) in Geobacillus thermodenitrificans NG80-2. In this study, random- and site-directed mutagenesis were performed to enhance the activity of the enzyme. By screening 7,500 clones from random-mutant libraries for enhanced hexadecane hydroxylation activity, three mutants were obtained: A102D, L320V, and F146C/N376I. By performing saturation site-directed mutagenesis at the 102, 320, 146, and 376 sites, six more mutants (A102E, L320A, F146Q/N376I, F146E/N376I, F146R/N376I, and F146N/N376I) were generated. Kinetic studies showed that the hydroxylation activity of purified LadA mutants on hexadecane was 2–3.4-fold higher than that of the wild-type enzyme, with the activity of F146N/N376I being the highest. Effects of the mutations on optimum temperature, pH, and heat stability of LadA were also investigated. A complementary study showed that Pseudomonas fluorescens KOB2Δ1 strains expressing the LadA mutants grew more rapidly with hexadecane than the strain expressing wild-type LadA, confirming the enhanced activity of LadA mutants in vivo. Structural changes resulting from the mutations were analyzed and the correlation between structural changes and enzyme activity was discussed. The mutants generated in this study are potentially useful for the treatment of environmental oil pollution and in other bioconversion processes.  相似文献   

9.
The thermal and alkaline pH stability of Streptomyces lividans xylanase B was improved greatly by random mutagenesis using DNA shuffling. Positive clones with improved thermal stability in an alkaline buffer were screened on a solid agar plate containing RBB-xylan (blue). Three rounds of directed evolution resulted in the best mutant enzyme 3SlxB6 with a significantly improved stability. The recombinant enzyme exhibited significant thermostability at 70°C for 360 min, while the wild-type lost 50% of its activity after only 3 min. In addition, mutant enzyme 3SlxB6 shows increased stability to treatment with pH 9.0 alkaline buffer. The K m value of 3SlxB6 was estimated to be similar to that of wild-type enzyme; however k cat was slightly decreased, leading to a slightly reduced value of k cat/K m, compared with wild-type enzyme. DNA sequence analysis revealed that eight amino acid residues were changed in 3SlxB6 and substitutions included V3A, T6S, S23A, Q24P, M31L, S33P, G65A, and N93S. The stabilizing effects of each amino acid residue were investigated by incorporating mutations individually into wild-type enzyme. Our results suggest that DNA shuffling is an effective approach for simultaneous improvement of thermal and alkaline pH stability of Streptomyces lividans xylanase B even without structural information.  相似文献   

10.
Aspergillus flavus K49 secreted at least two xylanase activities when grown on a medium containing larch (wood) xylan as a sole carbon source. Enzyme activity was assayed using an agar medium containing Remazol Brilliant Blue R conjugated oat spelt xylan as substrate. Crude enzyme preparations were inhibited by Hg+2, with an ED50 of 17.5 mM and maximum inhibition of 83% at 50 mM. A concentrated sample of A. flavus K49 xylanase preparation was subjected to gel filtration chromatography on a P-30 column. A small protein peak coinciding with the major peak of xylanase activity was separated from the other secreted fungal proteins. An additional peak of xylanase activity was observed in fractions containing multiple fungal proteins. Analysis by denaturing sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) of fractions containing the smaller molecular weight xylanase revealed a major and minor protein band in the vicinity of 14 kD. Analysis of these same fractions by acidic native PAGE revealed a single band. Confirmation of identity for the isolated xylanase was provided by isolation of a protein band from a SDS–PAGE gel, followed by trypsin digestion/analysis by tandem mass spectrometry. Comparison of the peptide library derived from this protein band with sequence data from the A. oryzae genomic data base provided a solid match with an endo-1,4-β-xylanase, XlnA. This identification is consistent with a low molecular weight protein associated with the major xylanolytic activity. XlnA may be a highly mobile (diffusible), plant wall hemicellulose degrading factor with significant activity during plant infection.  相似文献   

11.
Shih TW  Pan TM 《Biotechnology letters》2011,33(9):1841-1846
Error-prone PCR was used to create more thermoactive and/or thermostable variants of thermoalkalophilic lipases. A variant of the α6 helix (lid domain), with an 189E to V substitution at residue 189, lost its thermostability but exhibited higher activity than that of its wild-type predecessor (r03Lip). Site-saturation mutagenesis was used to explore the sequence-function relationship. Five other mutants also lost thermostability (20–40%) but exhibited enhanced thermoactivity (6.3–79-fold). The mutant E189I showed the highest activity retaining 50% activity after maintaining it at 65°C for 24 h. In comparison to r03Lip, the mutant E189I had a higher affinity for p-nitrophenyl palmitate and p-nitrophenyl stearate (61 and 56% decreased Km) and catalytic efficiency (42-fold and 18-fold increased kcat/Km). The mutant lipase retained its tolerance to n-hexane, but had an improved transesterification activity. The results suggest that residue Glu189 plays a significant role in the thermostability and activity of this thermoalkalophilic lipase.  相似文献   

12.
Systematic screening of single-gene knockout collection of Escherichia coli BW25113 (the Keio collection) was performed to select mutants that could enhance the deethylation of 7-ethoxycoumarin catalyzed by CYP154A1. After 96-well plate high-throughput screening followed by test tube assays, four mutants (ΔcpxA, ΔgcvR, ΔglnL, and an unknown-gene-deleted one (Δuk)) were able to increase the CYP154A1 activity by approximately 1.4–1.7 times compared with that of the control strain. When new mutants were constructed by disrupting individually the cpxA, gcvR, glnL, and uk genes in E. coli BW25113, three of them (ΔcpxA, ΔgcvR, and ΔglnL) showed high levels of CYP154A1 activity. However, the uk-disruptant failed to enhance the CYP154A1 activity, suggesting that the high CYP154A1 activity of the Δuk mutant in the Keio collection was due to a spontaneous mutation in the chromosome. In-frame deletion mutants of ΔcpxA, ΔgcvR, and ΔglnL also exhibited high enzyme activity, and complementation of these mutations could decrease CYP154A1 activity. These results indicated that the enhancement of the enzyme activity was not caused by polar effects on their neighbor genes. To our knowledge, this is the first report on a genome-wide screening of the genes for deletion to improve the activity of a recombinant whole-cell biocatalyst.  相似文献   

13.
In order to improve the thermostability of Escherichia coli AppA phytase, Error-prone PCR was used to randomize mutagenesis appA gene, and a gene mutation library was constructed. A mutant I408L was selected from the library by the method of high-throughput screening with 4-methyl-umbelliferylphosphate (4-MUP). The appA gene of the mutant was cloned and expressed in E. coli Origami (DE3). The recombinant protein was purified by Ni-affinity chromatography, and the enzymatic features were analyzed. The results indicated that AppA phytase activities of mutant I408L and wild-type (WT) strain remained at 51.3 and 28%, respectively, after treatment at 85°C for 5 min. It means that the thermostability enhancement of AppA phytase I408L was 23.3% more as compared with WT. The K m of both phytase were 0.18 and 0.25 mM, respectively, which indicated that the catalyzing efficiency of I408L was improved. AppA phytase of mutant I408L showed a significant enhancement against trypsin, which was nearly three times compared with WT. In addition, AppA phytase of mutant could be activated by Mg2+ and Mn2+; in contrast, it could be inhibited by Ca2+, Co2+, Cu2+, and K+ in varying degrees, and the enzymatic activity was almost lost the presence of Fe3+ and Zn2+. It appears that screening thermotolerant phytase of E. coli by high throughput screening with a fluorescence substrate is a fast, simple, and effective method. The mutant I408L obtained in this study could be used for the large-scale commercial production of phytase.  相似文献   

14.
Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60–80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6–7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.  相似文献   

15.
The aspartic protease from the human immunodeficiency virus type 1 (HIV-1) is highly toxic to E. coli, thus impairing its yield in production processes. Proteolytic cleavage of essential cellular proteins is probably a major contributor to the bacteriocidal effect but this has not been proven. Through an adapted high-throughput λ-based screening system, we have analyzed a set of HIV-1 protease mutants with distinguishable catalytic properties and we show that inactive enzymes are as toxic to E. coli cells as the wild-type enzyme. Together with additional data from directed molecular evolution approaches, these results indicate that the toxicity of the viral protease is not linked to its proteolytic activity. Our study also reveals that the λ-based screening system is a robust new tool for the genetic analysis of highly toxic recombinant products in E. coli.  相似文献   

16.
A total of sixteen spontaneously generated, independent suppressor mutants was isolated from a mutant (divE42) of Escherichia coli K12 that is defective in cell division. One of the suppressor mutants, designated TR4, had a novel phenotype: it was able to grow at 42° C but not at 32° C. The Kohara genomic library was screened for complementing clones. Clone 148 was able to complement the mutation responsible for the cold-sensitive phenotype, and the gene for trigger factor (tig), which encodes a ribosome-associated peptidyl-prolyl cis/trans isomerase, was identified as the mutated gene by deletion analysis with the insert DNA from clone 148. DNA sequencing revealed that the mutation in the tig gene of the TR4 suppressor mutant was a single nucleotide insertion (+A) at a distance of 834 nucleotides from the initiation codon for this enzyme. When the wild-type tig gene was introduced into the TR4 suppressor mutant, the bacteria were able to grow at 32° C but not at 42° C, an indication that the intergenic suppressor mutation was recessive to the wild-type allele. A model is proposed that accounts for the phenotypes of the divE42 mutant and the TR4 suppressor mutant. Received: 3 March 1998 / Accepted: 14 July 1998  相似文献   

17.
Temperature-sensitive integration plasmids carrying internal fragments of the Streptomyces lividans TK24 recA gene were constructed and used to inactivate the chromosomal recA gene of S. lividans by gene disruption and gene replacement. Integration of these plasmids resulted in recA mutants expressing C-terminally truncated RecA proteins, as deduced from Southern hybridization experiments. Mutants FRECD2 in which the last 42 amino acids, comprising the variable part of bacterial RecA proteins, had been deleted retained the wild-type phenotype. The S. lividans recA mutant FRECD3 produced a RecA protein lacking 87 amino acids probably including the interfilament contact site. FRECD3 was more sensitive to UV and MMS than the wild-type. Its ability to undergo homologous recombination was impaired, but not completely abolished. Integration of the disruption plasmid pFRECD3 in S. coelicolor“Müller” caused the same mutant phenotype as S. lividans FRECD3. In spite of many attempts no S. lividans recA mutants with deletions of 165 C-terminal amino acids or more were isolated. Furthermore, the recA gene could not be replaced by a kanamycin resistance cassette. These experiments indicate a crucial role of the recA gene in ensuring viability of Streptomyces. Received: 20 December 1996 / Accepted: 25 March 1997  相似文献   

18.
The widely accepted model for toxicity mechanisms of the Bacillus thuringiensis Cry δ-endotoxins suggests that helices α4 and α5 form a helix-loop-helix hairpin structure to initiate membrane insertion and pore formation. In this report, alanine substitutions of two polar amino acids (Asn-166 and Tyr-170) and one charged residue (Glu-171) within the α4–α5 loop of the 130-kDa Cry4B mosquito-larvicidal protein were initially made via polymerase chain reaction-based directed mutagenesis. As with the wild-type toxin, all of the mutant proteins were highly expressed in Escherichia coli as inclusion bodies upon isopropyl-β-d-thiogalactopyranoside induction. When E. coli cells expressing each mutant toxin were assayed against Aedes aegypti mosquito larvae, the activity was almost completely abolished for N166A and Y170A mutations, whereas E171A showed only a small reduction in toxicity. Further analysis of these two critical residues by induction of specific mutations revealed that polarity at position 166 and highly conserved aromaticity at position 170 within the α4–α5 loop play a crucial role in the larvicidal activity of the Cry4B toxin.  相似文献   

19.
A screening method was developed for detection of bacterial mutants having active enzymes with altered electrophoretic mobility. The method is based on the use of a mixture of several clones, and examination of an extract of the mixture electrophoretically. A variant enzyme will thus be detectable by its position apart from the mixture of wild-type enzymes.Following exposure to a mutagenic agent, five mutants of E. coli K12 were detected and isolated. Two of these have variant MDH (malate dehydrogenates), the others have variant forms of 6-phosphogluconate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and esterase.Preliminary mapping of the MDH locus has been performed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号