首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We have found that chromosaponin I (CSI), a gamma-pyronyl-triterpenoid saponin isolated from pea (Pisum sativum L. cv Alaska), specifically interacts with AUX1 protein in regulating the gravitropic response of Arabidopsis roots. Application of 60 microM CSI disrupts the vertically oriented elongation of wild-type roots grown on agar plates but orients the elongation of agravitropic mutant aux1-7 roots toward the gravity. The CSI-induced restoration of gravitropic response in aux1-7 roots was not observed in other agravitropic mutants, axr2 and eir1-1. Because the aux1-7 mutant is reduced in sensitivity to auxin and ethylene, we examined the effects of CSI on another auxin-resistant mutant, axr1-3, and ethylene-insensitive mutant ein2-1. In aux1-7 roots, CSI stimulated the uptake of [(3)H]indole-3-acetic acid (IAA) and induced gravitropic bending. In contrast, in wild-type, axr1-3, and ein2-1 roots, CSI slowed down the rates of gravitropic bending and inhibited IAA uptake. In the null allele of aux1, aux1-22, the agravitropic nature of the roots and IAA uptake were not affected by CSI. This close correlation between auxin uptake and gravitropic bending suggests that CSI may regulate gravitropic response by inhibiting or stimulating the uptake of endogenous auxin in root cells. CSI exhibits selective influence toward IAA versus 1-naphthaleneacetic acid as to auxin-induced inhibition in root growth and auxin uptake. The selective action of CSI toward IAA along with the complete insensitivity of the null mutant aux1-22 toward CSI strongly suggest that CSI specifically interacts with AUX1 protein.  相似文献   

2.
The requirement of auxin for the ethylene-mediated growth response in the root of Arabidopsis thaliana seedlings was investigated using two ethylene-resistant mutants, aux1-7 and eir1-1, whose roots have been shown to have a defect in the auxin influx and efflux carriers, respectively. A 50% inhibition of growth (I(50)) was achieved with 0.84 microl liter(-1) ethylene in wild-type roots, but 71.3 microl liter( -1) ethylene was required to induce I(50) in eir1-1 roots. In aux1-7 roots, I(50) was not obtained even at 1,000 microl liter(-1) ethylene. By contrast, in the presence of 10 nM 1-naphthaleneacetic acid (NAA), the concentrations of ethylene required to induce I(50) in eir1-1 and aux1-7 roots were greatly reduced nearly to the level required in wild-type roots. Since the action of NAA to restore the ethylene response in aux1-7 roots was not replaced by IAA, an increase in the intracellular level of auxin is likely to be the cause for the restoration of ethylene response. NAA at 10 nM did not inhibit root growth when applied solely, but it was the optimum concentration to recover the ethylene response in the mutant roots. These results suggest that auxin is a positive regulator for ethylene-induced inhibition in root elongation.  相似文献   

3.
Changes in root architecture are one of the adaptive strategies used by plants to compensate for nutrient deficiencies in soils. In this work, the temporal responses of Arabidopsis (Arabidopsis thaliana) root system architecture to low boron (B) supply were investigated. Arabidopsis Col-0 seedlings were grown in 10 μM B for 5 days and then transferred to a low B medium (0.4 μM) or control medium (10 μM) for a 4-day period. Low B supply caused an inhibition of primary root (PR) growth without altering either the growth or number of lateral roots (LRs). In addition, low B supply induced root hair formation and elongation in positions close to the PR meristem not observed under control conditions. The possible role of auxin and ethylene in the alteration of root system architecture elicited by low B supply was also studied by using two Arabidopsis reporter lines (DR5:GUS and EBS:GUS) and two Arabidopsis mutants with impaired auxin and ethylene signaling (aux1-22 and ein2-1). Low B supply increased auxin reporter DR5:GUS activity in PR tip, suggesting that low B alters the pattern of auxin distribution in PR tip. Moreover, PR elongation in aux1-22 mutant was less sensitive to low B treatment than in wild-type plants, which suggests that auxin resistant 1 (AUX1) participates in the inhibition of PR elongation under low B supply. From all these results, a hypothetical model to explain the effect of low B treatment on PR growth is proposed. We also show that ethylene, via ethylene-insensitive 2 (EIN2) protein, is involved in the induction of root hair formation and elongation under low B treatment.  相似文献   

4.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

5.
Niu Y  Jin C  Jin G  Zhou Q  Lin X  Tang C  Zhang Y 《Plant, cell & environment》2011,34(8):1304-1317
Root hairs may play a critical role in nutrient acquisition of plants grown under elevated CO(2) . This study investigated how elevated CO(2) enhanced the development of root hairs in Arabidopsis thaliana (L.) Heynh. The plants under elevated CO(2) (800 μL L(-1)) had denser and longer root hairs, and more H-positioned cells in root epidermis than those under ambient CO(2) (350 μL L(-1)). The elevated CO(2) increased auxin production in roots. Under elevated CO(2) , application of either 1-naphthoxyacetic acid (1-NOA) or N-1-naphthylphthalamic acid (NPA) blocked the enhanced development of root hairs. The opposite was true when the plants under ambient CO(2) were treated with 1-naphthylacetic acid (NAA), an auxin analogue. Furthermore, the elevated CO(2) did not enhance the development of root hairs in auxin-response mutants, axr1-3, and auxin-transporter mutants, axr4-1, aux1-7 and pin1-1. Both elevated CO(2) and NAA application increased expressions of caprice, triptychon and rho-related protein from plants 2, and decreased expressions of werewolf, GLABRA2, GLABRA3 and the transparent testa glabra 1, genes related to root-hair development, while 1-NOA and NPA application had an opposite effect. Our study suggests that elevated CO(2) enhanced the development of root hairs in Arabidopsis via the well-characterized auxin signalling and transport that modulate the initiation of root hairs and the expression of its specific genes.  相似文献   

6.
Rock CD  Sun X 《Planta》2005,222(1):98-106
Studies of abscisic acid (ABA) and auxin have revealed that these pathways impinge on each other. The Daucus carota (L.) Dc3 promoter: uidA (-glucuronidase: GUS) chimaeric reporter (ProDc3:GUS) is induced by ABA, osmoticum, and the auxin indole-3-acetic acid (IAA) in vegetative tissues of transgenic Arabidopsis thaliana (L.) Heynh. Here, we describe the root tissue-specific expression of ProDc3:GUS in the ABA-insensitive-2 (abi2-1), auxin-insensitive-1 (aux1), auxin-resistant-4 (axr4), and rooty (rty1) mutants of Arabidopsis in response to ABA, IAA and synthetic auxins naphthalene acetic acid (NAA), and 2, 4-(dichlorophenoxy) acetic acid. Quantitative analysis of ProDc3:GUS expression showed that the abi2-1 mutant had reduced GUS activity in response to ABA, IAA, or 2, 4-d, but not to NAA. Similarly, chromogenic staining of ProDc3:GUS activity showed that the aux1 and axr4 mutants gave predictable hypomorphic ProDc3:GUS expression phenotypes in roots treated with IAA or 2, 4-d, but not the diffusible auxin NAA. Likewise the rty mutant, which accumulates auxin, showed elevated ProDc3:GUS expression in the absence or presence of hormones relative to wild type. Interestingly, the aux1 and axr4 mutants showed a hypomorphic effect on ABA-inducible ProDc3:GUS expression, demonstrating that ABA and IAA signaling pathways interact in roots. Possible mechanisms of crosstalk between ABA and auxin signaling are discussed.  相似文献   

7.
Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.  相似文献   

8.
Auxin and ethylene promote root hair elongation in Arabidopsis   总被引:9,自引:0,他引:9  
Genetic and physiological studies implicate the phytohormones auxin and ethylene in root hair development. To learn more about the role of these compounds, we have examined the root hair phenotype of a number of auxin- and ethylene-related mutants. In a previous study, Masucci and Schiefelbein (1996) showed that neither the auxin response mutations aux1 and axr1 nor the ethylene response mutations etr1 and ein2 have a significant effect on root hair initiation. In this study, we found that mutants deficient in either auxin or ethylene response have a pronounced effect on root hair length. Treatment of wild-type, axr1 and etr1 seedlings with the synthetic auxin, 2,4-D, or the ethylene precursor ACC, led to the development of longer root hairs than untreated seedlings. Furthermore, axr1 seedlings grown in the presence of ACC produce ectopic root hairs and an unusual pattern of long root hairs followed by regions that completely lack root hairs. These studies indicate that both auxin and ethylene are required for normal root hair elongation.  相似文献   

9.
10.
The hypothesis that ethylene participates in the regulation of root hair development by phosphorus availability in Arabidopsis thaliana was tested by chemically manipulating ethylene synthesis and response and with ethylene-insensitive mutants. Low phosphorus-induced root hair development could be mimicked by adding the ethylene precursor, 1-aminocyclopropane-1-carboxylate (ACC), to high phosphorus media, and inhibited by adding ethylene inhibitors to low phosphorus media. Ethylene-insensitive mutants showed a reduced response to low phosphorus, indicating ethylene involvement in root hair responses to phosphorus deficiency. To dissect the nature of this involvement, the morphological and anatomical changes associated with increased root hair density were investigated. Growth in low phosphorus resulted in smaller, more numerous cortical cells, resulting in a larger number of root hair-bearing epidermal cell files. Cortical cell number was not affected by ethylene inhibitors, ACC, or mutations reducing ethylene sensitivity in roots grown with low phosphorus, indicating that ethylene does not participate in this response. The exception was the eir1 mutation, which strongly reduced this change in radial anatomy, supporting a role for polar auxin transport in this process. Trichoblast cell length was reduced by low phosphorus availability in all genotypes, but even more so for ein2-1 and ein4. The proportion of epidermal cells forming hairs and root hair length were reduced in ethylene-insensitive mutants, especially in the presence of low phosphorus. These results demonstrate multiple effects of low phosphorus from the earliest stages of root hair development, and cross-talk between ethylene and phosphorus in the control of a subset of the low phosphorus effects, concentrating on those later in development.  相似文献   

11.
Lateral root branching is a genetically defined and environmentally regulated process. Auxin is required for lateral root formation, and mutants that are altered in auxin synthesis, transport or signaling often have lateral root defects. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in the regulation of Arabidopsis lateral root formation are not well characterized. This study utilized Arabidopsis mutants altered in ethylene signaling and synthesis to explore the role of ethylene in lateral root formation. We find that enhanced ethylene synthesis or signaling, through the eto1-1 and ctr1-1 mutations, or through the application of 1-aminocyclopropane-1-carboxylic acid (ACC), negatively impacts lateral root formation, and is reversible by treatment with the ethylene antagonist, silver nitrate. In contrast, mutations that block ethylene responses, etr1-3 and ein2-5 , enhance root formation and render it insensitive to the effect of ACC, even though these mutants have reduced root elongation at high ACC doses. ACC treatments or the eto1-1 mutation significantly enhance radiolabeled indole-3-acetic acid (IAA) transport in both the acropetal and the basipetal directions. ein2-5 and etr1-3 have less acropetal IAA transport, and transport is no longer regulated by ACC. DR5-GUS reporter expression is also altered by ACC treatment, which is consistent with transport differences. The aux1-7 mutant, which has a defect in an IAA influx protein, is insensitive to the ethylene inhibition of root formation. aux1-7 also has ACC-insensitive acropetal and basipetal IAA transport, as well as altered DR5-GUS expression, which is consistent with ethylene altering AUX1-mediated IAA uptake, and thereby blocking lateral root formation.  相似文献   

12.
Cell polarity is commonly coordinated within the plane of a single tissue layer (planar polarity), and hair positioning has been exploited as a simple marker for planar polarization of animal epithelia . The root epidermis of the plant Arabidopsis similarly reveals planar polarity of hair localization close to root tip-oriented (basal) ends of hair-forming cells . Hair position is directed toward a concentration maximum of the hormone auxin in the root tip , but mechanisms driving this plant-specific planar polarity remain elusive. Here, we report that combinatorial action of the auxin influx carrier AUX1, ETHYLENE-INSENSITIVE2 (EIN2) , and GNOM genes mediates the vector for coordinate hair positioning. In aux1;ein2;gnom eb triple mutant roots, hairs display axial (apical or basal) instead of coordinate polar (basal) position, and recruitment of Rho-of-Plant (ROP) GTPases to the hair initiation site reveals the same polar-to-axial switch. The auxin concentration gradient is virtually abolished in aux1;ein2;gnom eb roots, where locally applied auxin can coordinate hair positioning. Moreover, auxin overproduction in sectors of wild-type roots enhances planar ROP and hair polarity over long and short distances. Hence, auxin may provide vectorial information for planar polarity that requires combinatorial AUX1, EIN2, and GNOM activity upstream of ROP positioning.  相似文献   

13.
The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.  相似文献   

14.
15.
Chromosaponin I (CSI), a triterpenoid saponin isolated from pea, stimulates the growth of roots in Arabidopsis thaliana seedlings on wetted filter paper in the light for 14 d. The growth rates of roots in Columbia (Col) and Landsberg erecta (Ler) wild-types were 0.92 and 0.26 mm d(-1), respectively, and they were accelerated to 3.46 (Col) and 2.20 (Ler) mm d(-1) by treating with 300 microM CSI. The length of mature epidermal cells was increased by 1.8-fold (Col) and 2.81-fold (Ler) compared with control and the number of epidermal cells was increased by a factor of 1.65 (Col) and 2.12 (Ler). Treatment with 2-aminoethoxyvinylglycine (AVG), an inhibitor of ethylene biosynthesis, also increased cell length but not cell number. The effects of CSI on root growth were not detected in the ethylene-insensitive mutant ein2-1. CSI did not inhibit ethylene production but stimulated the growth of roots in ctr1-1, the constitutive triple response mutant for ethylene, indicating that CSI inhibits ethylene signaling, especially downstream of CTR1. In the GA-insensitive mutant gai and the mutant spy-3, in which the basal level of GA signaling is activated, CSI did not increase cell number, although both CSI and AVG stimulated cell elongation in these mutants. These results suggest that the inhibition of ethylene signaling is the cause of CSI-induced cell elongation. A possible involvement of both GA and ethylene signalings is discussed for the CSI-induced cell division.  相似文献   

16.
Mutation of either arginase structural gene (ARGAH1 or ARGAH2 encoding arginine [Arg] amidohydrolase-1 and -2, respectively) resulted in increased formation of lateral and adventitious roots in Arabidopsis (Arabidopsis thaliana) seedlings and increased nitric oxide (NO) accumulation and efflux, detected by the fluorogenic traps 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate and diamino-rhodamine-4M, respectively. Upon seedling exposure to the synthetic auxin naphthaleneacetic acid, NO accumulation was differentially enhanced in argah1-1 and argah2-1 compared with the wild type. In all genotypes, much 3-amino,4-aminomethyl-2',7'-difluorofluorescein diacetate fluorescence originated from mitochondria. The arginases are both localized to the mitochondrial matrix and closely related. However, their expression levels and patterns differ: ARGAH1 encoded the minor activity, and ARGAH1-driven beta-glucuronidase (GUS) was expressed throughout the seedling; the ARGAH2::GUS expression pattern was more localized. Naphthaleneacetic acid increased seedling lateral root numbers (total lateral roots per primary root) in the mutants to twice the number in the wild type, consistent with increased internal NO leading to enhanced auxin signaling in roots. In agreement, argah1-1 and argah2-1 showed increased expression of the auxin-responsive reporter DR5::GUS in root tips, emerging lateral roots, and hypocotyls. We propose that Arg, or an Arg derivative, is a potential NO source and that reduced arginase activity in the mutants results in greater conversion of Arg to NO, thereby potentiating auxin action in roots. This model is supported by supplemental Arg induction of adventitious roots and increased NO accumulation in argah1-1 and argah2-1 versus the wild type.  相似文献   

17.
Mutagenized populations of Arabidopsis thaliana seedlings were screened for plants capable of root growth on inhibitory concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Four of the mutant lines recovered from this screen display a defect in root gravitropism as well as hormone resistance. The aerial portions of these plants are similar to wild-type in appearance. Genetic analysis of these four mutants demonstrated that hormone resistance segregated as a recessive trait and that all four mutations were alleles of the auxin-resistant mutation aux1 [Maher HP, Martindale SJB (1980) Biochem Genet 18: 1041-1053]. These new mutants have been designated aux1-7, 1-12, 1-15, and 1-19. The sensitivity of wild-type and aux1-7 roots to indole-3-acetic acid, 2,4-dichlorophenoxyacetic acid, and ethylene was determined. The results of these assays show that aux1-7 plants require a 12-fold (indole-3-acetic acid) or 18-fold (2,4-dichlorophenoxyacetic acid) higher concentration of auxin than wild-type for a 50% inhibition of root growth. In addition, ethylene inhibition of root growth in aux1-7 plants is approximately 30% that of wild-type at saturating ethylene concentrations. These results indicate that aux1 plants are resistant to both auxin and ethylene. We have also determined the effect of ethylene treatment on chlorophyll loss and peroxidase activity in the leaves of aux1 and wild-type plants. No difference between mutant and wild-type plants was observed in these experiments, indicating that hormone resistance in aux1 plants may be limited to root growth. Our studies suggest that the AUX1 gene may have a specific function in the hormonal regulation of gravitropism.  相似文献   

18.
19.
Polar auxin transport inhibitors, including N-1-naphthylphthalamicacid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), have variouseffects on physiological and developmental events, such as theelongation and tropism of roots and stems, in higher plants.We isolated NPA-resistant mutants of Arabidopsis thaliana, withmutations designated pir1 and pir2, that were also resistantto TIBA. The mutations specifically affected the root-elongationprocess, and they were shown ultimately to be allelic to aux1and ein2, respectively, which are known as mutations that affectresponses to phytohormones. The mechanism of action of auxintransport inhibitors was investigated with these mutants, inrelation to the effects of ethylene, auxin, and the polar transportof auxin. With respect to the inhibition of root elongationin A. thaliana, we demonstrated that (1) the background levelof ethylene intensifies the effects of auxin transport inhibitors,(2) auxin transport inhibitors might act also via an inhibitorypathway that does not involve ethylene, auxin, or the polartransport of auxin, (3) the hypothesis that the inhibitory effectof NPA on root elongation is due to high-level accumulationof auxin as a result of blockage of auxin transport is not applicableto A. thaliana, and (4) in contrast to NPA, TIBA itself hasa weak auxin-like inhibitory effect. (Received April 12, 1996; Accepted September 2, 1996)  相似文献   

20.
Previously, we identified Arabidopsis thaliana mutant rhd1-4 as hypersusceptible to the sugar beet cyst nematode Heterodera schachtii. We assessed rhd1-4 as well as two other rhd1 alleles and found that each exhibited, in addition to H. schachtii hypersusceptibility, decreased root length, increased root hair length and density, and deformation of the root epidermal cells compared with wild-type A. thaliana ecotype Columbia (Col-0). Treatment of rhd1-4 and Col-0 with the ethylene inhibitors 2-aminoethoxyvinylglycine and silver nitrate and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid suggests that the rhd1-4 hypersusceptibility and root morphology phenotypes are the result of an increased ethylene response. Assessment of known ethylene mutants further support the finding that ethylene plays a role in mediating A. thaliana susceptibility to H. schachtii because mutants that overproduce ethylene (eto1-1, eto2, and eto3) are hypersusceptible to H. schachtii and mutants that are ethylene-insensitive (etr1-1, ein2-1, ein3-1, eir1-1, and axr2) are less susceptible to H. schachtii. Because the ethylene mutants tested show altered susceptibility and altered root hair density and length, a discrimination between the effects of altered ethylene signal transduction and root hair density on susceptibility was accomplished by analyzing the ttg and gl2 mutants, which produce ectopic root hairs that result in greatly increased root hair densities while maintaining normal ethylene signal transduction. The observed normal susceptibilities to H. schachtii of ttg and g12 indicate that increased root hair density, per se, does not cause hypersusceptibility. Furthermore, the results of nematode attraction assays suggest that the hypersusceptibility of rhd1-4 and the ethylene-overproducing mutant eto3 may be the result of increased attraction of H. schachtii-infective juveniles to root exudates of these plants. Our findings indicate that rhd1 is altered in its ethylene response and that ethylene signal transduction positively influences plant susceptibility to cyst nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号