首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature of species, especially as applied to large mammals, is of major concern in conservation. Here, we briefly comment on recent thinking in alpha taxonomy, and assert that species are in essence evolutionary lineages, and that the most effective way of recognising them is by their diagnosability, i.e. the so-called Phylogenetic Species Concept. We further assert that the amount of genetic distance is not a relevant datum for distinguishing species, and that the ability to interbreed is not relevant. We consider a few case studies, especially that of the Northern White Rhinoceros Ceratotherium cottoni, and also species in Loxodonta, Giraffa and Oreotragus.  相似文献   

2.
3.
4.
Concepts of ecological units, such as population, community, and ecosystem, are at the basis of ecological theory and research and have increasingly become the focus of conservation strategies. Concepts of these units still suffer from inconsistencies and confusions over terminology. The different concepts are treated here together as a common "conceptual cluster," with similar ecological functions (roles) and similar problems in their definition and use. An analysis of the multitude of existing terms and concepts that have been developed for these units reveals that they differ with respect to at least four basic criteria: (i) the questions as to whether they are defined statistically or via a network of interactions; (ii) if their boundaries are drawn by topographical or process-related criteria; (iii) how high the required internal relationships are; and (iv) if they are perceived as "real" entities or abstractions by an observer The various definitions cannot be easily sorted into just a few types, but they can be characterized by several independent criteria. I argue that serious problems arise if the different possibilities of defining ecological units are not recognized and if the concepts are perceived as self-evident. The different concepts of ecological units should be defined and used in a philosophically informed manner I propose a dual approach to the use of ecological units. Generic meanings of the main concepts (especially population, community, and ecosystem) should be retained only as heuristically useful perspectives, while specific and "operational" definitions of the concepts as units should be developed, depending on specific purposes of their use. Some thoughts on the basic requirements for such definitions and the domains of their uses are briefly explained.  相似文献   

5.
6.
7.
Haemopoietic stem cells: concept and definitions   总被引:3,自引:0,他引:3  
L G Lajtha 《Blood cells》1979,5(3):447-455
  相似文献   

8.
Electrochemical biosensors: recommended definitions and classification   总被引:9,自引:0,他引:9  
Two Divisions of the International Union of Pure and Applied Chemistry (IUPAC), namely Physical Chemistry (Commission 1.7 on Biophysical Chemistry formerly Steering Committee on Biophysical Chemistry) and Analytical Chemistry (Commission V.5 on Electroanalytical Chemistry) have prepared recommendations on the definition, classification and nomenclature related to electrochemical biosensors: these recommendations could, in the future, be extended to other types of biosensors. An electrochemical biosensor is a self-contained integrated device, which is capable of providing specific quantitative or semi-quantitative analytical information using a biological recognition element (biochemical receptor) which is retained in direct spatial contact with an electrochemical transduction element. Because of their ability to be repeatedly calibrated, we recommend that a biosensor should be clearly distinguished from a bioanalytical system, which requires additional processing steps, such as reagent addition. A device that is both disposable after one measurement, i.e. single use, and unable to monitor the analyte concentration continuously or after rapid and reproducible regeneration, should be designated a single use biosensor. Biosensors may be classified according to the biological specificity-conferring mechanism or, alternatively, to the mode of physico-chemical signal transduction. The biological recognition element may be based on a chemical reaction catalysed by, or on an equilibrium reaction with macromolecules that have been isolated, engineered or present in their original biological environment. In the latter cases. equilibrium is generally reached and there is no further, if any, net consumption of analyte(s) by the immobilized biocomplexing agent incorporated into the sensor. Biosensors may be further classified according to the analytes or reactions that they monitor: direct monitoring of analyte concentration or of reactions producing or consuming such analytes; alternatively, an indirect monitoring of inhibitor or activator of the biological recognition element (biochemical receptor) may be achieved. A rapid proliferation of biosensors and their diversity has led to a lack of rigour in defining their performance criteria. Although each biosensor can only truly be evaluated for a particular application, it is still useful to examine how standard protocols for performance criteria may be defined in accordance with standard IUPAC protocols or definitions. These criteria are recommended for authors. referees and educators and include calibration characteristics (sensitivity, operational and linear concentration range, detection and quantitative determination limits), selectivity, steady-state and transient response times, sample throughput, reproducibility, stability and lifetime.  相似文献   

9.
Haemopoietic stem cells: concepts and definitions   总被引:1,自引:0,他引:1  
E P Cronkite 《Blood cells》1979,5(3):457-459
  相似文献   

10.
《Molecular cell》2021,81(10):2055-2056
  相似文献   

11.
12.
13.
14.
《Biometrics》2010,66(4):1308-1308
  相似文献   

15.
16.
17.
18.
19.
《Molecular cell》2023,83(11):1761-1762
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号