首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose-depleted, nitrite-treated opossum erythrocytes effectively reduce methemoglobin in an environment of physiological saline and added glucose does not accelerate the rate of reduction. In autologous plasma or 25 mM phosphate-buffered saline pH 7.4, added glucose significantly accelerates methemoglobin reduction in glucose-depleted, nitrite-treated opossum erythrocytes. Human red cells require added glucose to carry out reduction of methemoglobin and increased phosphate concentration or autologous plasma does not alter the rate of this process. Within the opossum red cell in vitro, autooxidation of hemoglobin proceeds at a much slower rate than that observed in human erythrocytes.  相似文献   

2.
The methemoglobin reductase system plays a vital role in maintaining the equilibrium between hemoglobin and methemoglobin in blood. Exposure of red blood cells to oxidative stress (pathological/physiological) may cause impairment to this equilibrium. We studied the status of erythrocytic methemoglobin and the related reductase system during Plasmodium yoelii nigeriensis infection in mice and P. berghei infection in mastomys. Malaria infection was induced by intraperitoneal inoculation with 106 infected erythrocytes. The present investigation revealed a significant decrease in the activity of methemoglobin reductase, with a concomitant rise in methemoglobin content during P. yoelii nigeriensis infection in mice erythrocytes. This was accompanied with a significant increase in reduced glutathione and ascorbate levels. The activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase increased with a progressive rise in parasitemia. However, no methemoglobin or associated reductase activity was detected in normal and P. berghei-infected mastomys. P. berghei infection in mastomys resulted in an increase in the level of reduced glutathione and ascorbate in erythrocytes, and also in the activity of lactate dehydrogenase, glucose 6-phosphate dehydrogenase and glutathione reductase. These results suggest that antioxidants/antioxidant enzymes may prevent or reduce the formation of methemoglobin in the host and thereby protect the host from methemoglobinemia.  相似文献   

3.
Influences of base (pH 10), heat (50 degrees C), microwave radiation (2450 MHz, 103 +/- 4 W/kg), and hydrogen peroxide (5.6 mM) generated by glucose oxidase on oxidation of human oxyhemoglobin to methemoglobin were examined. Conversion of oxyhemoglobin to methemoglobin was followed by the difference in absorbancy of 540 or 542 nm and 576 nm wavelength light versus time. Fresh basic hemolysates auto-oxidized on heating with a zero order rate constant, implying that hemoglobin or another protein saturated with oxyhemoglobin catalyzed the oxidation. Simultaneous microwave irradiation inhibited thermally induced auto-oxidation on the average by 28.6%. However, there was great variability among samples and a decrease in auto-oxidation with aging of individual samples. The auto-oxidation rate was independent of initial oxyhemoglobin concentration. Oxidation of partially purified oxyhemoglobin by hydrogen peroxide was not influenced by microwave irradiation. Adding green hemoprotein isolated from human erythrocytes to the oxyhemoglobin/glucose oxidase reaction mixture yielded absorption spectra (500-600 nm) that were a combination of oxyhemoglobin, deoxyhemoglobin, and methemoglobin spectra. Green hemoprotein was labile in hemolysates but stable in a partially purified ferric form. These results imply that thermally unstable reduced green hemoprotein can reverse oxidation of oxyhemoglobin by hydrogen peroxide and could mediate the thermally induced and microwave inhibited auto-oxidation of oxyhemoglobin.  相似文献   

4.
Human erythrocytes were shown previously to catalyze the oxyhemoglobin-requiring hydroxylation of aniline, and the reaction was stimulated apparently preferentially by NADPH in the presence of methylene blue (K. S. Blisard and J. J. Mieyal,J. Biol. Chem.254, 5104, 1979). The current study provides a further characterization of the involvement of the NADPH-dependent electron transport system in this reaction. In accordance with the role of NADPH, the hydroxylase activity of erythrocytes or hemolysates from individuals with glucose-6-phosphate dehydrogenase deficiency (i.e., with diminished capacity to form NADPH) displayed decreased responses to glucose or glucose 6-phosphate, respectively, in the presence of methylene blue in comparison to samples from normal adults; maximal activity could be restored by direct addition of NADPH to the deficient hemolysates. Kinetic studies of the methylene blue-stimulated aniline hydroxylase activity of normal hemolysates revealed a biphasic dependence on NADPH concentrations: a plateau was observed at relatively low concentrations (KmNADPH ~ 20 μm), whereas saturation was not achieved at the higher concentrations of NADPH. The latter low efficiency phase (i.e., at the higher concentrations of NADPH) could be ascribed to a direct transfer of electrons from NADPH to methylene blue to hemoglobin. The high efficiency phase suggested involvement of the NADPH-dependent methemoglobin reductase; accordingly 2′-AMP, an analog of NADP+, effectively inhibited this reaction, but the pattern was noncompetitive. This behavior is suggestive of a mechanism by which both NADPH and methylene blue are substrates for the reductase and interact with it in a sequential fashion. The kinetic patterns observed for variation in NADPH concentration at several fixed concentrations of methylene blue, and vice versa, are consistent with this interpretation.  相似文献   

5.
N,N-Diethyldithiocarbamate (DDC), a copper-chelating agent, not only inhibits superoxide dismutase activity in the red cell, but also depletes glutathione and promotes the production of methemoglobin, sulfhemoglobin, and small amounts of lipid peroxidation products. DDC reacts with oxyhemoglobin to yield disulfiram, hydrogen peroxide, and methemoglobin. Disulfiram and hydrogen peroxide both convert GSH to GSSG, while DDC reduces methemoglobin to oxyhemoglobin. Although disulfiram also reacts with the hemoglobin sulfhydryl groups, this reaction does not play a role in the conversion of GSH to GSSG. Other hemoglobin derivatives, ferrous, and ferric ions do not catalyze the oxidation of GSH by DDC. These results support the conclusion that DDC reacts with the super-oxo-ferriheme complex of oxyhemoglobin to generate hydrogen peroxide and disulfiram and that the cyclic conversion of oxyhemoglobin to methemoglobin and DDC and disulfiram results in the net oxidation of GSH. Thus, damage to DDC-treated erythrocytes exposed to a putative superoxide-generating toxin, such as 1,4-naphthoquinone-2-sulfonate, may actually be due to diminished GSH concentration and hemoglobin oxidation rather than to superoxide radicals. Glucose added to the incubation medium of DDC-treated erythrocytes fully prevented glutathione depletion but not the oxidation of oxyhemoglobin to methemoglobin. Several other copper-chelating agents either failed to inhibit the activity of purified superoxide dismutase or when incubated with erythrocytes produced more extensive GSH depletion and hemoglobin oxidation than DDC. It is concluded that the interpretation of results with erythrocytes exposed to copper-chelating agents must consider their effects on GSH and hemoglobin as well as on superoxide dismutase inhibition. Moreover, one must be mindful of the interference by DDC in the analysis of GSH with 5,5'-dithiobis-(2-nitrobenzoic acid) in the absence of sufficient quantities of metaphosphoric acid to destroy DDC and that contamination of DDC with trace quantities of disulfiram may be a significant problem.  相似文献   

6.
We found that 2-amino-5-methylphenol was converted to the dihydrophenoxazinone with a reddish brown color by purified human hemoglobin, lysates of human erythrocytes, and human erythrocytes. The reddish brown compound was identified as 2-amino-4,4 alpha-dihydro-4 alpha,7-dimethyl-3H-phenoxazin-3-one by the measurement of NMR spectra, IR spectra, EI mass spectra, and absorption spectra. The changes in this phenoxazinone were studied under various conditions after mixing 2-amino-5-methylphenol with purified oxy- or methemoglobin, or with human erythrocytes. The production of 2-amino-4,4 alpha-dihydro-4 alpha,7-dimethyl-3H-phenoxazine-3-one from 2-amino-5-methylphenol was found to be tightly coupled with the oxidation of ferrous hemoglobin and reduction of ferric hemoglobin under aerobic conditions. By studying the production rates of the dihydrophenoxazinone and the oxido-reduction rates of ferrous and ferric hemoglobins during the reactions of ferrous or ferric hemoglobin with 2-amino-5-methylphenol under aerobic and anaerobic conditions, the reaction mechanism was extensively proposed.  相似文献   

7.
The prooxidative effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) were observed in human erythrocytes. Incubation of red blood cells with the membrane-permeable TEMPO leads to a decrease in the concentration of intracellular reduced glutathione, accompanied by the reduction of TEMPO. Extracellular ferricyanide inhibited the loss of glutathione and reduction of TEMPO. TEMPO induced glutathione release from the cells and oxidation of hemoglobin to methemoglobin; ferricyanide prevented these effects. These results indicate that TEMPO may act as an oxidant to erythrocytes, whilst extracellular ferricyanide protects against its effects.  相似文献   

8.
Dapsone (DDS) hydroxylamine metabolites cause oxidative stress- linked adverse effects in patients, such as methemoglobin formation and DNA damage. This study evaluated the ameliorating effect of the antioxidant resveratrol (RSV) on DDS hydroxylamine (DDS-NHOH) mediated toxicity in vitro using human erythrocytes and lymphocytes. The antioxidant mechanism was also studied using in-silico methods. In addition, RSV provided intracellular protection by inhibiting DNA damage in human lymphocytes induced by DDS-NHOH. However, whilst pretreatment with RSV (10–1000 μM significantly attenuated DDS-NHOH-induced methemoglobinemia, but it was not only significantly less effective than methylene blue (MET), but also post-treatment with RSV did not reverse methemoglobin formation, contrarily to that observed with MET. DDS-NHOH inhibited catalase (CAT) activity and reactive oxygen species (ROS) generation, but did not alter superoxide dismutase (SOD) activity in erythrocytes. Pretreatment with RSV did not alter these antioxidant enzymes activities in erythrocytes treated with DDS-NHOH. Theoretical calculations using density functional theory methods showed that DDS-NHOH has a pro-oxidant effect, whereas RSV and MET have antioxidant effect on ROS. The effect on methemoglobinemia reversion for MET was significantly higher than that of RSV. These data suggest that the pretreatment with resveratrol may decrease heme-iron oxidation and DNA damage through reduction of ROS generated in cells during DDS therapy.  相似文献   

9.
Methemoglobin formation was examined in erythrocytes of 16 patients with Parkinson’s disease (PD) (stage 3–4 by the Hoehn and Yahr scale). The patients receiving levodopa-containing drugs (madopar, nakom) were also treated with intramuscular injections of mexidol (daily dose 100 mg/day) for 14 days. Control group included 12 clinically healthy persons. The erythrocyte methemoglobin content was determined by electronic paramagnetic resonance (EPR) using the EPR signal intensity with the g-factor 6.0. The methemoglobin content was significantly higher in erythrocytes of PD patients than in healthy donors. The complex therapy with mexidol normalized the methemoglobin content in erythrocytes of PD patients. Incubation in vitro of erythrocytes of donors and PD patients with acrolein increased the methemoglobin content, while incubation with carnosine normalized the methemoglobin content in erythrocytes of PD patients. Prophylactic (i.e. before acrolein addition) and therapeutic administration of carnosine to the incubation system with acrolein decreased the methemoglobin content to its initial level. Results of this study suggest that inclusion of the antioxidants mexidol and carnosine in the scheme of basic therapy of PD may reduce side effects associated with methemoglobinemia.  相似文献   

10.
The formation of two hemoglobin forms (methemoglobin and nitrite methemoglobin) in native human erythrocytes in the presence of sodium nitrite in suspension was shown. In normal erythrocytes, the interaction of intracellular oxyhemoglobin with nitrite ions results in the formation of methemoglobin, whereas in metabolically exhausted erythrocytes, this leads predominantly to the formation of nitrite methemoglobin. The nitrite methemoglobin reacts with hydrogen peroxide to form reactive intermediates (e.g. peroxynitrous acid) and the products of hemoglobin destruction. During the storage of erythrocyte suspensions containing methemoglobin and modified nitrite methemoglobin, differences in the forms of erythrocytes and the degree of their hemolysis were revealed. It is assumed that the formation of methemoglobin leads to the destruction of erythrocytes.  相似文献   

11.
1. Glucose-depleted, nitrite-treated erythrocytes reduce ferriheme in vitro in an environment 100 mM to 2-deoxy-D-glucose at a rate of 2.4 microM/ml cells/hr (opossum) and 0.37 microM/ml cells/hr (human). 2. During the process of methemoglobin reduction the breakdown of adenine ribonucleotides is more rapid in opossum (0.9 microM/g hg/hr) than in human (0.36 microM/g hg/hr) erythrocytes. 3. Radiolabelled ribose from [U-14C] ATP is catabolized exclusively to [14C] lactate in opossum, and to [14C] pyruvate and [14C] lactate in human red cells.  相似文献   

12.
Because the ability of cells to replace oxidized fatty acids in membrane phospholipids via deacylation and reacylation in situ may be an important determinant of the ability of cells to tolerate oxidative stress, incorporation of exogenous fatty acid into phospholipid by human erythrocytes has been examined following exposure of the cells to t-butyl hydroperoxide. Exposure of human erythrocytes to t-butyl hydroperoxide (0.5-1.0 mM) results in oxidation of glutathione, formation of malonyldialdehyde, and oxidation of hemoglobin to methemoglobin. Under these conditions, incorporation of exogenous [9,10-3H]oleic acid into phosphatidylethanolamine is enhanced while incorporation of [9,10-3H]oleic acid into phosphatidylcholine is decreased. These effects of t-butyl hydroperoxide on [9,10-3H]oleic acid incorporation are not affected by dissipating transmembrane gradients for calcium and potassium. When malonyldialdehyde production is inhibited by addition of ascorbic acid, t-butyl hydroperoxide still decreases [9,10-3H]oleic acid incorporation into phosphatidylcholine but no stimulation of [9,10-3H]oleic acid incorporation into phosphatidylethanolamine occurs. In cells pre-treated with NaNO2 to convert hemoglobin to methemoglobin, t-butyl hydroperoxide reduces [9,10-3H]oleic acid incorporation into phosphatidylcholine by erythrocytes but does not stimulate [9,10-3H]oleic acid incorporation into phosphatidylethanolamine. Under these conditions oxidation of erythrocyte glutathione and formation of malonyldialdehyde still occur. These results indicate that membrane phospholipid fatty acid turnover is altered under conditions where peroxidation of membrane phospholipid fatty acids occurs and suggest that the oxidation state of hemoglobin influences this response.  相似文献   

13.
We have studied the stimulation by EDTA of methemoglobin reduction in hemolysates of human erythrocytes. The EDTA effect has been shown not to be the result of an allosteric interaction of EDTA with hemoglobin or the result of a photochemical reduction. The effect does not appear to be due to a direct interaction of free EDTA with either of the catalytic components of the erythrocyte methemoglobin reduction system. The EDTA stimulation seen in hemolysates is due to the formation of an iron-EDTA complex, which transfers electrons from the reductase to methemoglobin.  相似文献   

14.
Lactate (20 mM) was studied for its effect on the intensity of [1-6-14C] glucose and [1,4-14C] succinate oxidation by the rat myocardial homogenates. It is established that lactate induces specific suppression of aerobic glucose oxidation. A moderate reduction of the succinate and lactate oxidation in their combined incubation is of a non-specific character.  相似文献   

15.
The main metabolic properties of human red blood cells (RBC) overloaded with glucose catabolizing enzymes such as hexokinase and glucose oxidase were evaluated. Human erythrocytes loaded with human hexokinase metabolized 3.1 +/- 0.2 mumol/h/ml RBC of glucose, an amount double that consumed by normal and unloaded cells (1.46 +/- 0.16 mumol/h/ml RBC), while glucose oxidase-loaded erythrocytes consumed up to 5.5 +/- 0.5 mumol/h/ml RBC of glucose but with a time-dependent increase in methemoglobin formation due to the H2O2 produced in the glucose oxidase reaction. This methemoglobin production was greatly reduced while glucose consumption was increased (8.1 +/- 0.4 mumol/h/ml RBC) by coentrapment of hexokinase and glucose oxidase. Similar results were obtained in mouse red blood cells, although the role of hexokinase was less pronounced due to a higher basal level of this enzyme. When administered to diabetic mice the hexokinase/glucose oxidase-overloaded erythrocytes had a circulating half-life of 5 days and were able to regulate blood glucose at near physiological levels. A single intraperitoneal administration of 500 microliters of enzyme-loaded cells maintained a near-normal blood glucose concentration for 7 +/- 1 days, while repeated administrations at 10-day intervals were effective in the regulation of blood glucose levels for several weeks. These results suggest that enzyme-loaded erythrocytes can behave as circulating bioreactors and can provide a new way to reduce abnormally elevated blood glucose.  相似文献   

16.
The percentage of erthrocytes with thorn-shaped protuberances--echinocytes--was calculated in the blood smears of 10 healthy men before and after a 48 hour sharp hypobaric hypoxia in the climatic chamber of Tabai. The absorbtion spectra at the range 400-650 nm were investigated in the smooth erythrocytes and echinocytes. The methemoglobin content in the echinocytes is higher than in the smooth erythrocytes. The sharp hypobaric hypoxia results in the increase in the percentage of echinocytes and erythrocytes with fetal hemoglobin, in the change of osmotic stability and acidic resistance of erythrocytes, and in the rise of peroxid oxidation of lipids. The role of methemoglobin production upon a sharp hypobaric hypoxia is discussed.  相似文献   

17.
An assay for determining the rate of methemoglobin reduction in hemolysates of human erythrocytes has been developed. The rates obtained by this assay, when corrected for dilution, are comparable to those obtained with intact cells. Increased ionic strength inhibits the reaction, whereas EDTA increases the rate of reduction. The rate with NADPH as electron donor is 65-70% of the rate with NADH. Added cytochrome b5 stimulates the reaction. The assay has been used to examine erythrocytes from two methemoglobinemic sisters and their asymptomatic mother. Hemolysates of the two patients have both decreased dichlorophenolindophenol reductase activity and decreased ability to reduce methemoglobin. Hemolysates from the heterozygous mother have intermediate dichlorophenolindophenol reductase activity and intermediate methemoglobin reduction ability. The data presented in this paper indicate that the concentrations of cytochrome b5 and cytochrome b5 reductase determine the rate of methemoglobin reduction in hemolysates.  相似文献   

18.
We have examined the structure-activity relationships in methemoglobin (MetHb) formation by high explosives 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-nitramine (tetryl) and 2,4,6-trinitrophenyl-N-nitraminoethylnitrate (pentryl), and a number of model nitrobenzenes. In lysed human erythrocytes the rate constants of oxyhemoglobin (OxyHb) oxidation increased with an increase in single-electron reduction potential (E(1)7) or with a decrease of the enthalpies of single-electron reduction of nitroaromatics. Tetryl and pentryl oxidized OxyHb almost 3 times faster than TNT. Although the initial rates of MetHb formation in intact erythrocytes by tetryl, pentryl, and TNT matched their order of reactivity in the oxidation of OxyHb in lysed erythrocytes, TNT was a more efficient MetHb forming agent than tetryl and pentryl during a 24-h incubation. The decreased efficiency of tetryl and pentryl was attributed to their reaction with intraerythrocyte reduced glutathione (GSH) producing 2,4,6-trinitrophenyl-Sglutathione, which acted as a less efficient OxyHb oxidizing agent.  相似文献   

19.
The rate at which chick embryo fibroblasts in primary or secondary culture transport glucose or 3-O-methyl glucose is strongly influenced by the presence of bicarbonate ion in the culture medium. Cells growing or maintained on glucose at physiologic concentration (5.5 mM) have an 8 to 10 fold higher rate of glucose uptake than their counterparts cultivated without bicarbonate. These cells also produce more lactate as a consequence of their more rapid intake of glucose. The hydrogen acceptors, methylene blue and dehydroascorbate added to the culture medium reduce the cell capacity to transport glucose and 3-O-methyl glucose to levels obtaining in the bicarbonate-free medium. There is a concomitant reduction in glucose utilized by cells during 24 hours and further reduction in lactate formed per molecule of glucose metabolized.  相似文献   

20.
The effect of acrylonitrile (VCN) on erythrocyte lipid metabolism was investigated in vitro in metabolically active red cells from male Sprague-Dawley rats containing three types of hemoglobins: oxyhemoglobin, methemoglobin, and carbon monoxyhemoglobin. VCN at the concentration of 10 mM rapidly depleted erythrocyte glutathione (GSH) (75% of control) and induced lipid peroxidation (274% of control). Degradation of oxy- and methemoglobin was directly proportional to the extent of lipid peroxidation (r = 0.89). Addition of glucose to the incubation medium decreased hemoglobin degradation while it slightly increased VCN-induced lipid peroxidation. The highest amount of lipid peroxidation occurred in erythrocytes containing carbon monoxyhemoglobin and glucose. In the isolated red cell membranes incubated with 10 mM VCN, the lipid peroxidation was 400% of controls. VCN (25 mM) noncompetitively inhibited erythrocyte membrane Na+/K(+)-ATPase activity and the degree of inhibition was inversely proportional to the reaction temperature (r = -0.88). These findings indicate that the VCN induced hemoglobin degradation and lipid peroxidation are two extremes of a spectrum of oxidative damage in red cells leading to a change in physical state of membrane structure causing inhibition of adenosine triphosphate (ATPase) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号