首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Immunisation with live, radiation-attenuated sporozoites (RAS) or genetically attenuated sporozoites (GAS) of rodent plasmodial parasites protects against subsequent challenge infections. We recently showed that immunisation with Plasmodium berghei GAS that lack the microneme protein P36p protects mice for a period of up to 4 months. Here, we show that the period of full protection induced by p36p(-)-sporozoites lasts 12 and 18 months in C57Bl6 and BALB/c mice, respectively. Full protection is also achieved with three doses of only 1000 p36p(-) (but not RAS) sporozoites. Subcutaneous, intradermal or intramuscular routes of administration also lead to partial protection. In addition, immunisation with either P. berghei RAS- or, to a lesser extent, p36p(-)-sporozoites inhibits parasite intrahepatic development in mice challenged with Plasmodium yoelii sporozoites. Since naturally acquired malaria infections or subunit-based vaccines only induce short-term immune responses, the protection conferred by immunisation with p36p(-)-sporozoites described here further emphasises the potential of GAS as a vaccination strategy for malaria.  相似文献   

2.
Malaria inflicts an enormous toll in human lives and this burden is increasing. Present means to fight the disease, such as drugs and insecticides, are insufficient. Moreover, an effective vaccine has not yet been developed. This review examines an alternative strategy for malaria control, namely the genetic modification of mosquitoes to make them inefficient vectors for the parasite. The article summarises progress made toward the development of transposable element vectors for germ line transformation and the search for mosquito markers of transformation. Also reviewed is the search for anti-malarial effector genes whose products can inhibit development of the parasite in the mosquito with minimal fitness burden. While much progress has been made, much work remains to be done. Future research directions are discussed.  相似文献   

3.
Invasion of hepatocytes by Plasmodium sporozoites is a prerequisite for establishment of a natural malaria infection. The molecular mechanisms underlying sporozoite invasion are largely unknown. We have previously reported that infection by Plasmodium falciparum and Plasmodium yoelii sporozoites depends on CD81 and cholesterol-dependent tetraspanin-enriched microdomains (TEMs) on the hepatocyte surface. Here we have analyzed the role of CD81 and TEMs during infection by sporozoites from the rodent parasite Plasmodium berghei. We found that depending on the host cell type, P. berghei sporozoites can use several distinct pathways for invasion. Infection of human HepG2, HuH7 and HeLa cells by P. berghei does not depend on CD81 or host membrane cholesterol, whereas both CD81 and cholesterol are required for infection of mouse hepatoma Hepa1-6 cells. In primary mouse hepatocytes, both CD81-dependent and -independent mechanisms participate in P. berghei infection and the relative contribution of the different pathways varies, depending on mouse genetic background. The existence of distinct invasion pathways may explain why P. berghei sporozoites are capable of infecting a wide range of host cell types in vitro. It could also provide a means for human parasites to escape immune responses and face polymorphisms of host receptors. This may have implications for the development of an anti-malarial vaccine targeting sporozoites.  相似文献   

4.
Humans immunized by the bites of irradiated Plasmodium falciparum (Pf) sporozoite-infected mosquitoes are protected against malaria. Radiation attenuates the sporozoites preventing them from fully developing and replicating in hepatocytes, but the effects of radiation on gene expression in sporozoites are unknown. We used RT-PCR (35 cycles of PCR followed by densitometry) to assess the expression of ten genes in Pf sporozoites, and in sporozoites irradiated with 15,000cGy. Irradiation reduced expression substantially (>60%) of two DNA repair genes; moderately (30-60%) of PfUIS3, the Pf orthologue of PbUIS3, a gene up-regulated in Plasmodium berghei sporozoites and of a third DNA repair gene; and minimally (<30%) of the Pf18S ribosomal RNA, PfCSP, PfSSP2/TRAP, and PfCELTOS genes. Irradiation increased expression of PfSPATR minimally. PfLSA1 RNA was not detectable in sporozoites. These results establish that radiation of sporozoites affects gene expression levels and provide the foundation for studies to identify specific genes involved in attenuation and protective immunity.  相似文献   

5.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

6.
7.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

8.
Long-lived mosquitoes maximize the chances of Plasmodium transmission. Yet, in spite of decades of research, the effect of Plasmodium parasites on mosquito longevity remains highly controversial. On the one hand, many studies report shorter lifespans in infected mosquitoes. On the other hand, parallel (but separate) studies show that Plasmodium reduces fecundity and imply that this is an adaptive strategy of the parasite aimed at redirecting resources towards longevity. No study till date has, however, investigated fecundity and longevity in the same individuals to see whether this prediction holds. In this study, we follow for both fecundity and longevity in Plasmodium-infected and uninfected mosquitoes using a novel, albeit natural, experimental system. We also explore whether the genetic variations that arise through the evolution of insecticide resistance modulate the effect of Plasmodium on these two life-history traits. We show that (i) a reduction in fecundity in Plasmodium-infected mosquitoes is accompanied by an increase in longevity; (ii) this increase in longevity arises through a trade-off between reproduction and survival; and (iii) in insecticide-resistant mosquitoes, the slope of this trade-off is steeper when the mosquito is infected by Plasmodium (cost of insecticide resistance).  相似文献   

9.
The mitochondrial electron transport system is necessary for growth and survival of malarial parasites in mammalian host cells. NADH dehydrogenase of respiratory complex I was demonstrated in isolated mitochondrial organelles of the human parasite Plasmodium falciparum and the mouse parasite Plasmodium berghei by using the specific inhibitor rotenone on oxygen consumption and enzyme activity. It was partially purified by two sequential steps of fast protein liquid chromatographic techniques from n-octyl glucoside solubilization of the isolated mitochondria of both parasites. In addition, physical and kinetic properties of the malarial enzymes were compared to the host mouse liver mitochondrial respiratory complex I either as intact or as partially purified forms. The malarial enzyme required both NADH and ubiquinone for maximal catalysis. Furthermore, rotenone and plumbagin (ubiquinone analog) showed strong inhibitory effect against the purified malarial enzymes and had antimalarial activity against in vitro growth of P. falciparum. Some unique properties suggest that the enzyme could be exploited as chemotherapeutic target for drug development, and it may have physiological significance in the mitochondrial metabolism of the parasite.  相似文献   

10.
Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection.  相似文献   

11.
Most medicinal plants used against malaria in endemic areas aim to treat the acute symptoms of the disease such as high temperature fevers with periodicity and chills. In some endemic areas of the Brazilian Amazon region one medicinal plant seems to be an exception: Ampelozyziphus amazonicus, locally named “Indian beer” or “Saracura-mira”, used to prevent the disease when taken daily as a cold suspension of powdered dried roots. In previous work we found no activity of the plant extracts against malaria blood parasites in experimentally infected animals (mice and chickens) or in cultures of Plasmodium falciparum. However, in infections induced by sporozoites, chickens treated with plant extracts were partially protected against Plasmodium gallinaceum and showed reduced numbers of exoerythrocytic forms in the brain. We now present stronger evidence that the ethanolic extract of “Indian beer” roots hampers in vitro and in vivo development of Plasmodium berghei sporozoites, a rodent malaria parasite. Some mice treated with high doses of the plant extract did not become infected after sporozoite inoculation, whereas others had a delayed prepatent period and lower parasitemia. Our data validates the use of “Indian beer” as a remedy for malaria prophylaxis in the Amazon, where the plant exists and the disease represents an important problem which is difficult to control. Studies aiming to identify the active compounds responsible for the herein described causal prophylactic activity are needed and may lead to a new antimalarial prophylactic.  相似文献   

12.
A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process.  相似文献   

13.
Salivary glands are the ultimate site of development in the insect of mosquito born pathogens such as Plasmodium. Mosquito salivary glands also secrete components involved in anti-haemostatic activities and allergic reactions. We investigated the feasibility of RNAi as a tool for functional analysis of genes expressed in Anopheles gambiae salivary glands. We show that specific gene silencing in salivary glands requires the use of large amounts of dsRNA, condition that differs from those for efficient RNAi in other mosquito tissues. Using this protocol, we demonstrated the role of AgApy, which encodes an apyrase, in the probing behaviour of An. gambiae.  相似文献   

14.
Anopheles gambiae and Toxorhynchites brevipalpis represent the nocturnal and diurnal extremes of the mosquito light intensity range, and their eyes are structurally very different. A. gambiae has fused rhabdoms with huge acceptance angles, whereas T. brevipalpis has open rhabdoms with rhabdomere acceptance angles comparable with those of advanced (brachyceran) flies. Here, we show that the retina-lamina projections are consistent with these differences. The short receptor axons from each ommatidium in A. gambiae insert as a group between four lamina monopolar cell clusters. In T. brevipalpis axon bundles from each ommatidium undergo a twist in their passage through the nuclear layer of the lamina, and then fan out into a space the diameter of which is about twice the separation of the monopolar cell clusters. This arrangement is consistent with a neural superposition mechanism closely similar to that found in higher Diptera, but which must have evolved independently.  相似文献   

15.
Hypoestoxide (HE) is a diterpene isolated from Hypoestes rosea (Acanthaceae), a plant indigenous to Nigeria. Previous studies demonstrated that HE exhibited potent anti-inflammatory and anti-cancer activities in well established animal models but weak in vitro activities in both the anti-inflammation and anti-cancer in vitro screening systems. We now report a similar observation in the in vitro and in vivo screening systems for antimalarial activity. The results indicate that while HE exhibits a relatively weak in vitro activity (IC(50) = 10 microM versus 0.11 microM for chloroquine) against different strains of cultured P. falciparum parasites, the dose of HE required to reduce parasitemia by 90% in Plasmodium berghei-infected mice, is much lower than standard antimalaria drugs (SD(90) = 250 microg/kg versus 5mg/kg for chloroquine). Furthermore, lower doses of HE were much more effective than higher doses in inhibiting parasite development. The implications of these findings are discussed.  相似文献   

16.
Understanding malaria transmission in Papua New Guinea (PNG) requires exact knowledge of which Anopheles species are transmitting malaria and is complicated by the cryptic species status of many of these mosquitoes. To identify the malaria vectors in PNG we studied Anopheles specimens from 232 collection localities around human habitation throughout PNG (using CO2 baited light traps and human bait collections). A total of 22,970 mosquitoes were individually assessed using a Plasmodium sporozoite enzyme-linked immunosorbent assay to identify Plasmodiumfalciparum, Plasmodiumvivax and Plasmodiummalariae circumsporozoite proteins. All mosquitoes were identified to species by morphology and/or PCR. Based on distribution, abundance and their ability to develop sporozoites, we identified five species as major vectors of malaria in PNG. These included: Anophelesfarauti, Anopheleshinesorum (incriminated here, to our knowledge, for the first time), Anophelesfarauti 4, Anopheleskoliensis and Anophelespunctulatus. Anopheleslongirostris and Anophelesbancroftii were also incriminated in this study. Surprisingly, An. longirostris showed a high incidence of infections in some areas. A newly identified taxon within the Punctulatus Group, tentatively called An. farauti 8, was also found positive for circumsporozoite protein. These latter three species, together with Anopheleskarwari and Anophelessubpictus, incriminated in other studies, appear to be only minor vectors, while Anophelesfarauti 6 appears to be the major vector in the highland river valleys (>1500 m above sea level). The nine remaining Anopheles species found in PNG have been little studied and their bionomics are unknown; most appear to be uncommon with limited distribution and their possible role in malaria transmission has yet to be determined.  相似文献   

17.
During its life cycle the malarial parasite Plasmodium forms three invasive stages which have to invade different and specific cells for replication to ensue. Invasion is vital to parasite survival and consequently proteins responsible for invasion are considered to be candidate vaccine/drug targets. Plasmodium perforin-like proteins (PPLPs) have been implicated in invasion because they contain a predicted pore-forming domain. Ookinetes express three PPLPs, and one of them (PPLP3) has previously been shown to be essential for mosquito midgut invasion. In this study we show through phenotypic analysis of loss-of-function mutants that PPLP5 is equally essential for mosquito infection. Deltapplp5 ookinetes cannot invade midgut epithelial cells, but subsequent parasite development is rescued if the midgut is bypassed by injection of ookinetes into the hemocoel. The indistinguishable phenotypes of Deltapplp5 and Deltapplp3 ookinetes strongly suggest that these two proteins contribute to a common process.  相似文献   

18.
For successful transmission to the vertebrate host, malaria sporozoites must migrate from the mosquito midgut to the salivary glands. Here, using purified sporozoites inoculated into the mosquito haemocoel, we show that salivary gland invasion is inefficient and that sporozoites have a narrow window of opportunity for salivary gland invasion. Only 19% of sporozoites invade the salivary glands, all invasion occurs within 8h at a rate of approximately 200 sporozoites per hour, and sporozoites that fail to invade within this time rapidly die and are degraded. Then, using natural release of sporozoites from oocysts, we show that haemolymph flow through the dorsal vessel facilitates proper invasion. Most mosquitoes had low steady-state numbers of circulating sporozoites, which is remarkable given the thousands of sporozoites released per oocyst, and suggests that sporozoite degradation is a rapid immune process most efficient in regions of high haemolymph flow. Only 2% of Anopheles gambiae haemocytes phagocytized Plasmodium berghei sporozoites, a rate insufficient to explain the extent of sporozoite clearance. Greater than 95% of haemocytes phagocytized Escherichia coli or latex particles, indicating that their failure to sequester large numbers of sporozoites is not due to an inability to engage in phagocytosis. These results reveal the operation of an efficient sporozoite-killing and degradation machinery within the mosquito haemocoel, which drastically limits the numbers of infective sporozoites in the mosquito salivary glands.  相似文献   

19.
Genetic markers for study of the anopheline vectors of human malaria   总被引:6,自引:0,他引:6  
Human malaria is truly a disease of global proportions and is one of the most broadly distributed vector-borne infections. Anopheline mosquitoes are the exclusive vectors of human malaria. A handful of species predominate as the most notorious malaria vectors, but the species and forms involved in the transmission of human malaria world-wide are incredibly diverse. Many of the anophelines that vector malaria exist as members of species complexes that often contain vector and non-vector species. Additionally, single anopheline species often exhibit significant heterogeneity across the species' range. This phenotypic and genotypic plasticity exacerbates the difficulties in identification of vector populations and implementation of effective surveillance and control strategies. Polytene chromosome investigations were among the first to provide researchers with tangible genetic markers that could be used to differentiate between what are now recognised as species and chromosomal forms of anopheline mosquitoes. The advent of the polymerase chain reaction gave access to the molecular genetics of genomes and the techniques that followed have facilitated investigation of the genetics of individual specimens or population size samples. The variety and number of genetic markers available for the study of malaria vectors has literally exploded in the last 10 years. Markers have expanded from the 'traditional tools' to include a vast array of molecular markers. Contemporary markers range from what are now referred to as 'classical genetic markers' to methods used to detect and identify single nucleotide polymorphisms and finally to highly polymorphic markers. One of the greatest advantages of this wide variety of genetic markers is that researchers may choose to utilise any combination of markers or techniques to address multifaceted questions relating to malaria transmission. These molecular markers have proven useful in a wide variety of applications including molecular taxonomy, evolutionary systematics, population genetics, genetic mapping, and investigation of defined phenotypes.  相似文献   

20.
The within-host and between-host dynamics of malaria are linked in myriad ways, but most obviously by gametocytes, the parasite blood forms transmissible from human to mosquito. Gametocyte dynamics depend on those of non-transmissible blood forms, which stimulate immune responses, impeding transmission as well as within-host parasite densities. These dynamics can, in turn, influence antigenic diversity and recombination between genetically distinct parasites. Here, we embed a differential-equation model of parasite-immune system interactions within each of the individual humans represented in a discrete-event model of Plasmodium falciparum transmission, and examine the effects of human population turnover, parasite antigenic diversity, recombination, and gametocyte production on the dynamics of malaria. Our results indicate that the local persistence of P. falciparum increases with turnover in the human population and antigenic diversity in the parasite, particularly in combination, and that antigenic diversity arising from meiotic recombination in the parasite has complex differential effects on the persistence of founder and progeny genotypes. We also find that reductions in the duration of individual human infectivity to mosquitoes, even if universal, produce population-level effects only if near-absolute, and that, in competition, the persistence and prevalence of parasite genotypes with gametocyte production concordant with data exceed those of genotypes with higher gametocyte production. This new, integrated approach provides a framework for investigating relationships between pathogen dynamics within an individual host and pathogen dynamics within interacting host and vector populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号