首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial theory of aging predicts that functional alterations in mitochondria leading to reactive oxygen species (ROS) production contribute to the aging process in most if not all species. Using cellular senescence as a model for human aging, we have recently reported partial uncoupling of the respiratory chain in senescent human fibroblasts. In the present communication, we address a potential cause-effect relationship between impaired mitochondrial coupling and premature senescence. Chronic exposure of human fibroblasts to the chemical uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) led to a temporary, reversible uncoupling of oxidative phosphorylation. FCCP inhibited cell proliferation in a dose-dependent manner, and a significant proportion of the cells entered premature senescence within 12 days. Unexpectedly, chronic exposure of cells to FCCP led to a significant increase in ROS production, and the inhibitory effect of FCCP on cell proliferation was eliminated by the antioxidant N-acetyl-cysteine. However, antioxidant treatment did not prevent premature senescence, suggesting that a reduction in the level of oxidative phosphorylation contributes to phenotypical changes characteristic of senescent human fibroblasts. To assess whether this mechanism might be conserved in evolution, the influence of mitochondrial uncoupling on replicative life span of yeast cells was also addressed. Similar to our findings in human fibroblasts, partial uncoupling of oxidative phsophorylation in yeast cells led to a substantial decrease in the mother-cell-specific life span and a concomitant incrase in ROS, indicating that life span shortening by mild mitochondrial uncoupling may represent a "public" mechanism of aging.  相似文献   

2.
It has been reported that genomic DNA methylation decreases gradually during cell culture and an organism's aging. However, less is known about the methylation changes of age-related specific genes in aging. p21(Waf1/Cip1) and p16(INK4a) are cyclin-dependent kinase (Cdk) inhibitors that are critical for the replicative senescence of normal cells. In this study, we show that p21(Waf1/Cip1) and p16(INK4a) have different methylation patterns during the aging process of normal human 2BS and WI-38 fibroblasts. p21(Waf1/Cip1) promoter is gradually methylated up into middle-aged fibroblasts but not with senescent fibroblasts, whereas p16(INK4a) is always unmethylated in the aging process. Correspondently, the protein levels of DNA methyltransferase 1 (DNMT1) and DNMT3a increase from young to middle-aged fibroblasts but decrease in the senescent fibroblasts, while DNMT3b decreases stably from young to senescent fibroblasts. p21(Waf1/Cip1) promoter methylation directly represses its expression and blocks the radiation-induced DNA damage-signaling pathway by p53 in middle-aged fibroblasts. More importantly, demethylation by 5-aza-CdR or DNMT1 RNA interference (RNAi) resulted in an increased p21(Waf1/Cip1) level and premature senescence of middle-aged fibroblasts demonstrated by cell growth arrest and high beta-Galactosidase expression. Our results suggest that p21(Waf1/Cip1) but not p16(INK4a) is involved in the DNA methylation mediated aging process. p21(Waf1/Cip1) promoter methylation may be a critical biological barrier to postpone the aging process.  相似文献   

3.
The Werner syndrome (WS) is a segmental progeroid syndrome caused by a recessive mutation (WRN) mapped to 8p12. The replicative life spans of somatic cells cultured from WS patients are substantially reduced compared to age-matched controls. Certain molecular concomitants of the replicative decline of normal fibroblast cultures have recently been defined, and it appears that multiple changes in gene expression accompany normal cell senescence. If the mechanisms by which WS cells exit the cell cycle were entirely comparable, the molecular markers of senescence should be identical in normal and WS cells. We find that this is not the case. The constitutive expression of statin, a nuclear protein associated with the nonproliferating state, was comparably expressed in normal and WS senescent cells. Likewise, the steady state levels of p53, a protein known to be involved in the G1 checkpoint of the cell cycle, were similar in early-passage fibroblasts from normal and WS subjects. The levels of p53 were not increased in senescent fibroblasts, whether derived from normal or WS subjects. By contrast, the inducibility of mRNA and protein expression of the c-fos protooncogene is preserved in late-passage WS cells. This is in contrast to what is observed in late-passage fibroblasts from normal subjects. Additional genotypes will have to be examined, however, to determine the specificity of this new aspect of the WS phenotype. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Genes that play a role in the senescent arrest of cellular replication are likely to be overexpressed in human diploid fibroblasts (HDF) derived from subjects with Werner syndrome (WS) because these cells have a severely curtailed replicative life span. To identify some of these genes, a cDNA library was constructed from WS HDF after they had been serum depleted and repleted (5 days in medium containing 1% serum followed by 24 h in medium containing 20% serum). Differential screening of 7,500 colonies revealed 102 clones that hybridized preferentially with [32P]cDNA derived from RNA of WS cells compared with [32P]cDNA derived from normal HDF. Cross-hybridization and partial DNA sequence determination identified 18 independent gene sequences, 9 of them known and 9 unknown. The known genes included alpha 1(I) procollagen, alpha 2(I) procollagen, fibronectin, ferritin heavy chain, insulinlike growth factor-binding protein-3 (IGFBP-3), osteonectin, human tissue plasminogen activator inhibitor type I, thrombospondin, and alpha B-crystallin. The nine unknown clones included two novel gene sequences and seven additional sequences that contained both novel segments and the Alu class of repetitive short interspersed nuclear elements; five of these seven Alu+ clones also contained the long interpersed nuclear element I (KpnI) family of repetitive elements. Northern (RNA) analysis, using the 18 sequences as probes, showed higher levels of these mRNAs in WS HDF than in normal HDF. Five selected mRNAs studied in greater detail [alpha 1(I) procollagen, fibronectin, insulinlike growth factor-binding protein-3, WS3-10, and WS9-14] showed higher mRNA levels in both WS and late-passage normal HDF than in early-passage normal HDF at various intervals following serum depletion/repletion and after subculture and growth from sparse to high-density confluent arrest. These results indicate that senescence of both WS and normal HDF is accompanied by overexpression of similar sets of diverse genes which may play a role in the senescent arrest of cellular replication and in the genesis of WS, normal biological aging, and attendant diseases.  相似文献   

5.
6.
Cellular senescence is described to be a consequence of telomere erosion during the replicative life span of primary human cells. Quiescence should therefore not contribute to cellular aging but rather extend lifespan. Here we tested this hypothesis and demonstrate that cultured long-term quiescent human fibroblasts transit into senescence due to similar cellular mechanisms with similar dynamics and with a similar maximum life span as proliferating controls, even under physiological oxygen conditions. Both, long-term quiescent and senescent fibroblasts almost completely fail to undergo apoptosis. The transition of long-term quiescent fibroblasts into senescence is also independent of HES1 which protects short-term quiescent cells from becoming senescent. Most significantly, DNA damage accumulates during senescence as well as during long-term quiescence at physiological oxygen levels. We suggest that telomere-independent, potentially maintenance driven gradual induction of cellular senescence during quiescence is a counterbalance to tumor development.  相似文献   

7.
8.
Genomic methylation, which influences many cellular processes such as gene expression and chromatin organization, generally declines with cellular senescence although some genes undergo paradoxical hypermethylation during cellular aging and immortalization. To explore potential mechanisms for this process, we analyzed the methylating activity of three DNA methyltransferases (Dnmts) in aging and immortalized WI-38 fibroblasts. Overall maintenance methylating activity by the Dnmts greatly decreased during cellular senescence. In immortalized WI-38 cells, maintenance methylating activity was similar to that of normal young cells. Combined de novo methylation activity of the Dnmts initially decreased but later increased as WI-38 cells aged and was strikingly elevated in immortalized cells. To further elucidate the mechanisms for changes in DNA methylation in aging and immortalized cells, the individual Dnmts were separated and individually assessed for maintenance and de novo methylating activity. We resolved three Dnmt fractions, one of which was the major maintenance methyltransferase, Dnmt1, which declined steadily in activity with cellular senescence and immortalization. However, a more basic Dnmt, which has significant de novo methylating activity, increased markedly in activity in aging and immortalized cells. We have identified this methyltransferase as Dnmt3b which has an important role in neoplastic transformation but its role in cellular senescence and immortalization has not previously been reported. An acidic Dnmt we isolated also had increased de novo methylating activity in senescent and immortalized WI-38 cells. These studies indicate that reduced genome-wide methylation in aging cells may be attributed to attenuated Dnmt1 activity but that regional or gene-localized hypermethylation in aging and immortalized cells may be linked to increased de novo methylation by Dnmts other than the maintenance methyltransferase.  相似文献   

9.
Previously, we reported that fibronectin (FN) mRNA was overexpressed in normal late-passage (old) and prematurely senescent Werner syndrome (WS) fibroblasts when compared to normal early-passage (young) cells (Muranoet al. Mol. Cell. Biol.11, 3905–3914, 1991). Therefore, we investigated the expression and function of the α5β1 FN receptor (FNR), a member of the integrin family, in young and senescent normal and WS cells. Levels of the α5 polypeptide, a unique subunit of the α5β1 FNR, were reduced in old cells, so that old cells produced fewer α5β1 heterodimers on the plasma membrane. The reduced levels of α5 polypeptide might be due to deficient translation and/or nonfunctional α5 mRNA since increased mRNA levels and unchanged polypeptide turnover were found in these cells. Moreover, the α5 polypeptides on the senescent cell surface were less accessible to monoclonal antibody, suggesting sequestration of this subunit, which might affect receptor–ligand binding. In contrast, β1 subunit, a common subunit for the β1 integrin subfamily, showed relatively stable levels during cellular aging, but underwent slower intracellular processing. Old cells exhibited reduced attachment to FN, which might be in part mediated by the α5β1 FNR. More importantly, old cells were deficient in response to FN-induced DNA synthesis and cell proliferation. This induction was pronounced in young cells, however, and could be completely inhibited by α5-specific monoclonal antibody, indicating mediation by α5β1 FNR. WS cells behaved like normal old cells in the above assays. Our results indicate that reduction of α5β1 FNR expression and its mediated effects are associated with the senescent phenotype of fibroblasts. These findings provide new insight into the mechanism(s) of replicative senescence in human fibroblasts.  相似文献   

10.
11.
Zaĭnullin VG  Moskalev AA 《Genetika》2000,36(8):1013-1016
The current research literature on the mechanisms responsible for maintenance of the genomic stability and their role in cell senescence both in vivo and in vitro is reviewed. Various types of age-dependent genomic destabilization in senescent cells are considered. Genetic instability of senescent cells is assumed to be associated with the life span and aging of an entire organism.  相似文献   

12.
The study of human genetic disorders known as premature aging syndromes may provide insight into the mechanisms of cellular senescence. These diseases are clinically characterized by the premature onset and accelerated progression of numerous features normally associated with human aging. Previous studies have indicated that fibroblasts derived from premature aging syndrome patients have in vitro growth properties similar to senescent fibroblasts from normal individuals. As an initial approach to determine whether gene expression is altered in premature aging syndrome fibroblasts, RNA was prepared from various cell strains and used for gel blot hybridization experiments. Although normal fibroblasts only express platelet-derived growth factor (PDGF) A-chain mRNA for a brief period following mitogenic stimulation, one strain of Hutchinson-Gilford (progeria) syndrome fibroblasts, AG3513, constitutively expresses PDGF A-chain mRNA and PDGF-AA homodimers. The PDGF A-chain gene does not appear to be amplified or rearranged in these fibroblasts. AG3513 progeria fibroblasts have properties characteristic of senescent cells, including an altered morphology and a diminished mitogenic response to growth promoters. The diminished response of AG3513 progeria fibroblasts to PDGF stimulation was examined in some detail. Studies using 125I-PDGF-BB, which binds with high affinity to both A- and B-type PDGF receptors, indicate that normal and AG3513 progeria fibroblasts have a similar number of PDGF receptors. Although receptor autophosphorylation occurs normally in PDGF-stimulated AG3513 progeria fibroblasts, c-fos mRNA induction does not. The senescent phenotype of AG3513 fibroblasts is probably unrelated to their constitutive PDGF A-chain gene expression; further studies are necessary in order to directly address this issue. Also, additional analysis of this progeria fibroblast strain may provide information on the control of mitogen-inducible gene expression in normal cells.  相似文献   

13.
Werner syndrome (WS) is an inherited disorder that produces somatic stunting, premature ageing and early onset of degenerative and neoplastic diseases. Cultured fibroblasts derived from subjects with WS are found to undergo premature replicative senescence and thus provide a cellular model system to study the disorder. Recently, several overexpressed gene sequences isolated from a WS fibroblast cDNA library have been shown to possess the capacity to inhibit DNA synthesis and disrupt many normal biochemical processes. Because a similar constellation of genes is overexpressed in WS and senescent normal fibroblasts, these data suggest the existence of a common molecular genetic pathway for replicative senescence in both types of cell. We propose that the primary defect in WS is a mutation in a gene for a trans-acting repressor protein that reduces its binding affinity for shared regulatory regions of several genes, including those that encode inhibitors of DNA synthesis (IDS). The mutant WS repressor triggers a sequence of premature expression of IDS and other genes, with resulting inhibition of DNA synthesis and early cellular senescence, events which occur much later in normal cells.  相似文献   

14.
Proteasome modulates mitochondrial function during cellular senescence   总被引:1,自引:0,他引:1  
Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidence that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype, and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence has significant effects on intra- and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production, and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a prooxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo.  相似文献   

15.
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.  相似文献   

16.
We have previously reported the production of DNA synthesis inhibitor proteins by both quiescent and senescent human diploid fibroblasts. Young, proliferating fibroblasts do not produce such inhibitors, but are capable of responding to either the quiescent or senescent cell DNA synthesis inhibitors. Recently, we have analyzed the immortal cell line SUSM-1 (derived from normal liver fibroblasts following exposure to carcinogen) for inhibitory activity. We have found that SUSM-1 cells produce a factor capable of inhibiting DNA synthesis in young fibroblasts. Crude extracts prepared from SUSM-1 cells inhibit DNA synthesis in a dose-dependent manner at concentrations 10-fold lower than those of either senescent or quiescent fibroblast cell extracts. SUSM-1 cells are incapable of responding to the inhibitor they produce, as are three other immortal human cell lines tested. One immortal cell line, HeLa, does respond to the SUSM-1 inhibitor, though to a lesser degree than observed with normal young fibroblasts. One hypothesis is that the DNA synthesis inhibitor protein(s) of senescent cells plays a role in determining the finite in vitro life span of normal cells. The results reported here suggest that SUSM-1 cells may have escaped senescence through loss of a receptor or cofactor for the inhibitor protein(s).  相似文献   

17.
18.
The accumulation of senescent fibroblasts within tissues has been suggested to play an important role in mediating impaired dermal wound healing, which is a major clinical problem in the aged population. The concept that replicative senescence in wound fibroblasts results in reduced proliferation and the failure of refractory wounds to respond to treatment has therefore been proposed. However, in the chronic wounds of aged patients the precise relationship between the observed alteration in cellular responses with aging and replicative senescence remains to be determined. Using assays to assess cellular proliferation, senescence-associated staining beta-galactosidase, telomere length, and extracellular matrix reorganizational ability, chronic wound fibroblasts demonstrated no evidence of senescence. Furthermore, analysis of in vitro senesced fibroblasts demonstrated cellular responses that were distinct and, in many cases, diametrically opposed from those exhibited by chronic wound fibroblasts. Forced expression of telomerase within senescent fibroblasts reversed the senescent cellular phenotype, inhibiting extracellular matrix reorganizational ability, attachment, and matrix metalloproteinase production and thus produced cells with impaired key wound healing properties. It would appear therefore that the distinct phenotype of chronic wound fibroblasts is not simply due to the aging process, mediated through replicative senescence, but instead reflects disease-specific cellular alterations of the fibroblasts themselves.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号