首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Measurement of DNA repair as unscheduled DNA synthesis (UDS) in vitro following exposure in vivo in multiple tissues from the same treated animal can provide valuable information relating to the tissue- and organ-specificity of chemically induced DNA damage. UDS was evaluated in primary cultures of rat tracheal epithelial cells, hepatocytes and pachytene spermatocytes after exposure in vitro to methyl chloride (MeCl), and after isolation from the same treated animal following inhalation exposure in vivo. Concentrations of 1-10% MeCl in vitro induced UDS in hepatocytes and spermatocytes, but not in tracheal epithelial cells. Inhalation exposure to MeCl in vivo (3000-3500 ppm 6 h/day for 5 successive days) failed to induce DNA repair in any cell type. In vivo exposure to 15 000 ppm MeCl for 3 h also failed to induce UDS in tracheal epithelial cells and spermatocytes, but did cause a marginal increase in UDS in hepatocytes. Thus, MeCl appears to be a weak, direct-acting genotoxicant. While activity could be measured in hepatocytes and spermatocytes directly in vitro, only extremely high concentrations of MeCl elicited a response in the whole animal, and then only in hepatocytes.  相似文献   

2.
A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells. UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle. Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine. The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.  相似文献   

3.
The unscheduled DNA synthesis (UDS) assay measures DNA repair following in vitro treatment of rat primary hepatocytes. This report compares the UDS response of primary hepatocytes from 2 widely used rat strains, the Fischer-344 (F344) and Sprague-Dawley (SD) strains. Ultraviolet (UV) light and 5 known genotoxic chemicals were evaluated in each strain in parallel experiments. The chemicals tested were 2-acetylaminofluorene (2-AAF), 4-aminobiphenyl (4-AB), benzidine, dimethylnitrosamine (DMN) and N-propyl-N'-nitro-N-nitrosoguanidine (PNNG). Four of these compounds (2-AAF, 4-AB, benzidine and DMN) require metabolic activation. Benzidine and PNNG were both negative using SD rat hepatocytes, but were weakly positive using F344 rat hepatocytes. In the first of 2 experiments, 4-AB was inconclusive in SD hepatocytes, but strongly positive in F344 cells. In the second experiment, 4-AB was positive in hepatocytes from both strains. 2-AAF was more strongly positive in F344 cells than in SD cells. DMN and UV light induced positive dose responses with little or no differences between strains. It is concluded that hepatocytes from F344 rats may be more sensitive, qualitatively and quantitatively, than hepatocytes from SD rats as indicators of UDS. This difference is not due to intrinsic differences in DNA repair mechanisms but is probably due to differences in drug-metabolizing enzymes between these strains. Thus, for routine screening, F344 rats are preferable for measurement of the in vitro UDS-inducing potential of compounds.  相似文献   

4.
A new method is described to investigate unscheduled DNA synthesis (UDS) in human tissue after exposure in vitro: the human hair follicle. A histological technique was applied to assess cytotoxicity and UDS in the same hair follicle cells.UDS induction was examined for 11 chemicals and the results were compared with literature findings for UDS in rat hepatocytes. Most chemicals inducing UDS in rat hepatocytes raised DNA repair at comparable concentrations in the hair follicle. However, 1 of 9 chemicals that gave a positive response in the rat hepatocyte UDS test, 2-acetylaminofluorene, failed to induce DNA repair in the hair follicle.Metabolizing potential of hair follicle cells was shown in experiments with indirectly acting compounds, i.e., benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene and dimethylnitrosamine.The results support the conclusion that the test in its present state is valuable as a screening assay for the detection of unscheduled DNA synthesis. Moreover, the use of human tissues may result in a better extrapolation to man.  相似文献   

5.
The herbicide 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB) is principally used in the USA on peanuts, soybeans and alfalfa. In Europe, it is used on undersown spring barley and grassland (with clover). The genetic toxicity in vitro of the dimethylamine salt of 2,4-DB was examined by employing a range of end points including gene mutation in bacteria (Ames test) and mammalian cell cultures (CHO/HGPRT assay), cytogenetic abnormalities in mammalian cells (CHO/chromosomal aberration assay), and induction of DNA damage and repair in rat hepatocytes. There were no indications of genotoxic potential for 2,4-DB in the first three of these assays. One of the two criteria for a positive response in the UDS assay was exceeded but the increases did not exceed the second criteria for a positive response. The test material was therefore evaluated as weakly active in this assay. The weight of the evidence clearly indicates that 2, 4-DB is not genotoxic to mammals and are consistent with the reported lack of carcinogenic potential for 2,4-DB in both mice and rats.  相似文献   

6.
The ability of 13 chemicals of known germ-cell mutagenicity to induce unscheduled DNA synthesis (UDS) in rat spermatocytes was examined. At selected times following i.p. injection of test compounds, spermatocytes were isolated from Fischer 344 rats by enzymatic digestion of the seminiferous tubules and cultured for 24 h in the presence of [3H]thymidine. 7 compounds, methyl methanesulfonate, triethylenemelamine, cyclophosphamide, methylnitrosourea, ethylnitrosourea, procarbazine, and dibromochloropropane produced positive UDS responses in spermatocytes. These chemicals are also positive for specific locus mutations, heritable translocations, or dominant lethal mutations when administered to male rodents. Mitomycin C, which produces DNA interstrand crosslinks and induces heritable mutations and translocations in male germ cells, failed to stimulate UDS in rat spermatocytes. Germ-cell nonmutagens N-methyl-N'-nitro-N-nitrosoguanidine, dimethylnitrosamine, 4-nitroquinoline 1-oxide, and ethylene dibromide were negative in the rat spermatocyte UDS assay. Correlation of these results with those of other assays for heritable mutations in germ cells indicates that the in vivo/in vitro spermatocyte DNA repair assay is useful in predicting the mutagenic potential of chemicals in male germ cells.  相似文献   

7.
The genotoxicity of the benzidine-congener-derived azo dyes. Direct Blue 1 ( DB1 ), Direct Blue 14 ( DB14 ), Direct Brown 95 ( DB95 ), and Direct Red 46 ( DR46 ) was studied in the in vitro and in vivo/in vitro unscheduled DNA synthesis (UDS) assays in primary rat hepatocytes to determine if in vivo metabolism of these compounds was required for induction of UDS. Hepatocytes were isolated, cultured, and treated with the azo dyes and [3H]thymidine (in vitro assay); alternatively, in the in vivo/in vitro assay, rats were intubated with the azo dyes, the hepatocytes isolated at 17 h after dosing and incubated in a medium containing [3H]thymidine. UDS was quantified by an autoradiographic method. None of the azo dyes induced UDS in the in vitro assay. However, DR46 did induce marginal, but significant UDS in 1 experiment (1.2 net grains at 500 micrograms/ml media). No significant UDS was observed when DR46 was tested in a subsequent in vitro assay. In the in vivo/in vitro assay, DB95 (100 mg/kg), DB14 (125 mg/kg), and DR46 (100 mg/kg) induced significant UDS (12, 2.1, and 3.5 net grains, respectively). None of the azo dyes tested was mutagenic in the Salmonella/microsome assay in the presence and absence of rat liver enzymes. Therefore, in vivo reduction of azo dyes, presumably by the gut microflora, is a requirement for the genotoxicity of these azo dyes in the primary rat hepatocyte UDS assay.  相似文献   

8.
The genotoxic activity of lucidin (1,3-dihydroxy-2-hydroxymethyl-9,10-anthraquinone), a natural component of Rubia tinctorum L., was tested in a battery of short-term tests. The compound was mutagenic in five Salmonella typhimurium strains without metabolic activation, but the mutagenicity was increased after addition of rat liver S9 mix. In V79 cells, lucidin was mutagenic at the hypoxanthine-guanine phosphoribosyl transferase gene locus and active at inducing DNA single-strand breaks and DNA protein cross-links as assayed by the alkaline elution method. Lucidin also induced DNA repair synthesis in primary rat hepatocytes and transformed C3HI M2-mouse fibroblasts in culture. We also investigated lucidinethylether, which is formed from lucidin by extraction of madder roots with boiling ethanol. This compound was also mutagenic in Salmonella, but only after addition of rat liver S9 mix. Lucidinethylether was weakly mutagenic to V79 cells which were cocultivated with rat hepatocytes. The compound did not induce DNA repair synthesis in hepatocytes from untreated rats, but positive results were obtained when hepatocytes from rats pretreated with phenobarbital were used. We conclude that lucidin and its derivatives are genotoxic.Abbreviations DMBA 7,12-dimethylbenz(a)anthracene - HA hydroxyanthraquinones - LUE lucidinethylether - PRH primary rat hepatocytes - UDS unscheduled DNA synthesis  相似文献   

9.
5 mutagen-sensitive mutants of Drosophila melanogaster, reported to perform normal or only slightly reduced excision repair of UV damage, were examined by an unscheduled DNA synthesis (UDS) assay. This assay measures the ability of cultured primary cells, derived from each mutant, to perform the resynthesis step in the excision repair pathway, following damage to cellular DNA by direct-acting alkylating agents, UV or X-irradiation. 2 mutants, classified as completely or partially proficient for both excision and postreplication repair of UV damage, mus(1)103 and mus(2)205, were found to give positive UDS responses only for UV damage. These mutants exhibit no measurable UDS activity following DNA damage by several different alkylating agents and X-rays. 3 mutants, classified as having no defect in excision repair, but measurable defects in postreplication repair of UV damage, mei-41, mus(1)101, and mus(3)310 exhibit 3 different response patterns when tested with the battery of agents in the UDS assay. The mutant mei-41 exhibits a highly positive UDS response following damage by all agents, consistent with its prior classification as excision-repair-proficient, but postreplication-repair-deficient for UV damage. The mutant mus(1)101, however, exhibits a strong positive UDS response following only UV damage and appears to be blocked in the excision repair of damage produced by both alkylating agents and X-irradiation. Finally, mus(3)310 exhibits no UDS response to alkylation, X-ray or UV damage. This is not consistent with its previous classification. Results obtained with the quantitative in vitro UDS assay are entirely consistent with the results from two separate in vivo measures of excision repair deficiency following DNA damage, larval hypersensitivity to killing and hypermutability in the sex-linked recessive lethal test.  相似文献   

10.
Ethylenediamine (EDA) was evaluated for potential genotoxic activity using a battery in vitro and in vivo mammalian tests. The tests employed were the Chinese hamster ovary (CHO) gene mutation assay, the sister-chromatid exchange (SCE) test with CHO cells, unscheduled DNA synthesis (UDS) assays with primary rat hepatocytes and a dominant lethal study with Fischer 344 rats. EDA did not produce a positive, dose-related, mutagenic effect in either the CHO mutation assay or in the SCE test when evaluated both with and without the addition of a rat-liver S9 activation system. With hepatocytes, no positive effects of EDA upon UDS values were noted in 2 separate studies using either a scintillation counting procedure or an autoradiographic method to determine UDS activity. In a dominant lethal study, male rats fed for 23 weeks with dietary levels of EDA X 2HCl of 0, 0.05, 0.15 or 0.50 g/kg/day, and mated with 1 virgin female/week for 3 consecutive weeks, showed no dose-related or statistically significant effects upon fertility, total number of implantations/female, or the number of living and dead implants per female; marked effects upon the incidence of dominant lethal mutations were noted in the positive control group injected intraperitoneally with one dose of 0.25 mg/kg triethylenemelamine. We conclude that EDA was not genotoxic in the in vitro and in vivo mammalian test systems employed.  相似文献   

11.
The utility of unscheduled DNA synthesis (UDS) testing for screening potentially hazardous chemicals was evaluated using the published papers and technical reports available to the UDS Work Group. A total of 244 documents were reviewed. Based on criteria defined in advance for evaluation of the results, 169 were rejected. From the 75 documents accepted, results were reviewed for 136 chemicals tested using autoradiographic approaches and for 147 chemicals tested using liquid scintillation counting (LSC) procedures; 38 chemicals were tested by both approaches to measure UDS. Since there were no documents available that provided detailed recommendations of UDS screening protocols or criteria for evaluating the results, the UDS Work Group presents suggested protocols and evaluation criteria suitable for measuring and evaluating UDS by autoradiography in primary rat hepatocytes and diploid human fibroblasts and by the LSC approach in diploid human fibroblasts. UDS detection is an appropriate system for inclusion in carcinogenicity and mutagenicity testing programs, because it measures the repair of DNA damage induced by many classes of chemicals over the entire mammalian genome. However, for this system to be utilized effectively, appropriate metabolic activation systems for autoradiographic measurements of UDS in human diploid fibroblasts must be developed, the nature of hepatocyte-to-hepatocyte variability in UDS responses must be determined, and the three suggested protocols must be thoroughly evaluated by using them to test a large number of coded chemicals of known in vivo mutagenicity and carcinogenicity.  相似文献   

12.
Okadaic acid (OA) is the main marine toxin implicated in the diarrhetic shellfish poisoning (DSP) in humans after consumption of contaminated bivalve molluscs. We have previously shown that OA was an in vitro aneugenic compound that induced chromosome loss via micronuclei formation in CHO-K1 cells. The aims of this study were to investigate the chromosomal non-disjunction (ND) potential of OA in human lymphocytes and the pathways involved for aneuploidy in CHO-K1 cells. Firstly, we analysed the formation of micronuclei and the non-disjunction for chromosomes 1 and 17 in binucleated human lymphocytes cells with the cytokinesis-blocked micronucleus (CBMN) assay coupled to a fluorescent in situ hybridization (FISH) technique with centromere-specific DNA probes. We showed that OA statistically increased the frequency of micronucleated lymphocytes in the dose range from 20 to 35 nM. However, FISH analysis did not reveal any increase in the non-disjunction for both chromosomes whatever the concentration between 2.5 and 35 nM. However, a significant increase in ND for the chromosome 17 was found at 1 nM. Secondly, in CHO-K1 cells, we investigated the dose and time dependent effects of OA: (i) on cell cycle progression, (ii) on mitotic-phase arrest and (ii) on mitotic spindle and centrosome abnormalities. The results showed that OA induced a progressive accumulation of mitotic CHO-K1 cells in prometaphase, an induction of multipolar mitotic spindle with centrosome amplification and the formation of multinucleated cells. We concluded that OA did not induce chromosome non-disjunction but should more likely induced chromosome loss in human lymphocytes. Moreover, our results obtained in CHO-K1 suggest that OA induced aneuploidy by preventing the chromosome attachment to the mitotic spindle and by amplifying the centrosome. The mode of action of the toxin in relation to its inhibition of protein phosphatases 1 (PP1) and 2A (PP2A) and the mitosis process is discussed.  相似文献   

13.
2,4-dichlorophenoxyacetic acid and several of its derivatives (collectively known as 2,4-D) are herbicides used to control a wide variety of broadleaf and woody plants. The genetic toxicity in vitro of 2,4-D and seven of its salts and esters were examined by employing gene mutation in bacteria (Ames test) and induction of DNA damage and repair in rat hepatocytes. In addition, an in vivo unscheduled DNA synthesis (UDS) assay was performed on 2,4-D. There were no indications of genotoxic potential for 2,4-D acid, or any of its derivatives, in these assays. These results are consistent with the reported lack of carcinogenic potential for 2,4-D in both mice and rats.  相似文献   

14.
The genotoxicity of zinc was examined in 4 short-term mutagenicity assays. Zinc acetate produced dose-related positive responses in the L5178Y mouse lymphoma assay and an in vitro cytogenetic assay with Chinese hamster ovary cells, but was negative in the Salmonella mutation assay and did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. Zinc-2,4-pentanedione produced frameshift mutations in Salmonella tester strains TA1538 and TA98, but did not induce unscheduled DNA synthesis in primary cultures of rat hepatocytes. The effect of ligand binding of zinc in the in vitro test systems is discussed.  相似文献   

15.
The microbial toxin okadaic acid (OA) specifically inhibits PPP-type ser/thr protein phosphatases. OA is an established tumor promoter with numerous cellular effects that include p53-mediated cell cycle arrest. In T51B rat liver epithelial cells, a model useful for tumor promotion studies, p53 activation is induced by tumor-promoting (low nanomolar) concentrations of OA. Two phosphatases sensitive to these concentrations of OA, PP2A and protein phosphatase 5 (PP5), have been implicated as negative regulators of p53. In this study we examined the respective roles of these phosphatases in p53 activation in non-neoplastic T51B cells. Increases in p53 activity were deduced from levels of p21 (cip1) and/or the rat orthologue of mdm2, two p53-regulated gene products whose induction was blocked by siRNA-mediated knockdown of p53. As observed with 10 nM OA, both phospho-ser15-p53 levels and p53 activity were increased by 10 microM fostriecin or SV40 small t-antigen. Both of these treatments selectively inhibit PP2A but not PP5. siRNA-mediated knockdown of PP2A, but not PP5, also increased p53 activity. Finally, adenoviral-mediated over-expression of an OA-resistant form of PP5 did not prevent increased phospho-ser15-p53, p53 protein, or p53 activity caused by 10 nM OA. Together these results indicate that PP5 blockade is not responsible for OA-induced p53 activation and G1 arrest in T51B cells. In contrast, specific blockade of PP2A mimics p53-related responses to OA in T51B cells, suggesting that PP2A is the target for this response to OA.  相似文献   

16.
Recently, many potent inhibitors of protein serine/threonine phosphatases (PPs) have been found. Some of them have proven to be tumor promoters in mouse skin two-step carcinogenesis and rat liver medium-term tests. Among these inhibitors, okadaic acid (OA) selectively inhibits PP2A, and its use has therefore been proposed to facilitate analysis of biological roles of this phosphatase. OA shows bimodal effects on in vitro transformation and, in addition to such epigenetic changes, also induces marked genetic changes. OA treatment for more than 1 week flattened NIH 3T3 transformants irreversibly, with loss of the transfected genes. It is also known to induce diphtheria toxin-resistant mutations in Chinese hamster lung cells and sister chromatid exchanges (SCEs) in Chinese hamster ovary cells and human lymphocytes. To analyze roles of protein phosphatases in gene stability, we isolated OA-resistant mutants. They were proven to have a mutation in the PP2A catalytic subunit, in which cysteine 269 had beensubstituted for glycine; and it was demonstrated that this region interacts with OA. The recombinant mutant protein was 4 9-fold more resistant to OA than the wild type. Although the OA resistant mutants of CHO cells expressed high levels of P-glycoprotein, inhibition of PP2A itself was suggested to lead to SCE induction. However, the number of molecular species of PP which are known to be sensitive to OA continues to increase, and we have isolated cDNA for a novel type of OA sensitive PP. Our studies indicate that the fact that the roles of PP2A cannot be elucidated using only OA is of crucial importance.  相似文献   

17.
Protein phosphatase 2A (PP2A) is a key signal transduction intermediate in the regulation of cellular proliferation and differentiation in vitro. However, the role of PP2A in the context of a developing organ is unknown. To explore the role of PP2A in the regulation of lung development, we studied the effect of PP2A inhibition on new airway branching, induction of apoptosis, DNA synthesis, and expression of epithelial marker genes in whole organ explant cultures of embryonic (E14) rat lung. Microdissected lung primordia were cultured in medium containing one of either two PP2A inhibitors, okadaic acid (OA, 0-9 nM) or cantharidin (Can, 0-3,600 nM), or with the PP2B inhibitor deltamethrin (Del, 0-10 microM) as a control for a PP2A-specific effect for 48 h. PP2A inhibition with OA and Can significantly inhibited airway branching and overall lung growth. PP2B inhibition with Del did not affect lung growth or new airway development. Histologically, both PP2A- and PP2B-inhibited explants were similar to controls. Increased apoptosis was not the mechanism of decreased lung growth and new airway branching inasmuch as OA-treated explant sections subjected to the terminal deoxynucleotidyltransferase dUTP nick end labeling reaction demonstrated a decrease in apoptosis. However, PP2A inhibition with OA increased DNA content and 5-bromo-2'-deoxyuridine uptake that correlated with a G(2)/M cell cycle arrest. PP2A inhibition also resulted in altered differentiation of the respiratory epithelium as evidenced by decreased mRNA levels of the early epithelial marker surfactant protein C. These findings suggest that inhibition of protein phosphatases with OA and Can halted mesenchymal cell cycle progression and reduced branching morphogenesis in fetal rat lung explant culture.  相似文献   

18.
Variation in hepatic metabolism between species may be an important factor in the differences observed in chemical carcinogenesis. We examined 6 chemicals representative of 4 chemical classes in the in vitro hepatocyte DNA repair assay using cells isolated from the Fischer-344 rat, B6C3F1 mouse, Syrian golden hamster, cynomolgus monkey and from human liver. Hepatocytes were isolated by in situ or biopsy liver perfusion and incubated with [3H]-thymidine and the test chemical. Unscheduled DNA synthesis (UDS) was measured as net grains/nucleus (NG) by quantitative autoradiography. Qualitative and quantitative differences in UDS responses were observed for every chemical. Liver cultures isolated from the rat, mouse, hamster, human, and monkey and treated with aflatoxin B1 or dimethylnitrosamine all yielded dose-related increases in NG. Human, rat, and hamster hepatocyte cultures yielded positive responses following exposure to the aromatic amines 2-acetylaminofluorene, 4-aminobiphenyl, and benzidine, whereas cultures isolated from the monkey and mouse yielded less than 0 NG. Treatment with benzo[a]pyrene (BAP) produced strong positive responses in monkey and human hepatocyte cultures, weak positive responses in hamster cultures, and equivocal or negative responses in rat and mouse hepatocyte cultures. Hepatocyte function was assessed by measurement of DNA content, glutathione content, BAP hydroxylase activity, p-nitroanisole-O-demethylase activity, p-nitrophenol conjugation, and urea synthesis rates. The functional capabilities of isolated hamster, monkey, and human hepatocyte cultures do not appear to correlate with UDS responses observed for any compound; however, they indicate that the cultures were metabolically competent at the time of chemical exposure. These studies suggest that rat hepatocytes are a suitable model for human hepatocytes, whereas mouse and male monkey hepatocytes may be insensitive to aromatic amines.  相似文献   

19.
Chemically-induced DNA repair was measured as unscheduled DNA synthesis (UDS) in selected tissues isolated from rats following in vivo exposure to inhaled dimethylnitrosamine (DMN). UDS was evaluated in epithelial cells from rat nasal turbinates and trachea, in hepatocytes and in pachytene spermatocytes from the same treated animal. At nominal concentrations of 500 and 1000 ppm of DMN in air, chemically-induced DNA repair was observed in the epithelial cells of the upper respiratory system. DMN also entered the circulation, as evidenced by a strong DNA-repair response in hepatocytes. No DNA repair was observed in pachytene spermatocytes indicating either that DMN or its active metabolites did not reach the testes in sufficient concentration to induce DNA repair or that the testes lacked the capability to metabolically activate the compound. These results illustrate the potential of this approach to assess the organ-specific genotoxicity of environmental chemicals.  相似文献   

20.
John Ashby  Brita Beije   《Mutation research》1985,150(1-2):383-392
Oral dosing of between 5–30 mg/kg of cyclophosphamide (CP) to Alderley Park rats induced micronuclei in the bone marrow between 12 and 36 h after dosing, but failed to induce unscheduled DNA synthesis (UDS) in the liver at similar dose levels and treatment periods. Dose levels of > 30 mg/kg were toxic to the liver. In contrast, 2-acetylaminofluorene (2AAF) induced UDS in the rat liver between 4–36 h after dosing, but gave only a weak response in the bone marrow assay at dose levels between 0.5 and 2 g/kg. Selected observations were made for each chemical using both tissues of the same test animal.

It is concluded that an assessment of the genotoxicity in vivo of chemicals defined as genotoxic in vitro will contribute to an assessment of their possible mammalian carcinogenicity, and that these should involve assays conducted using both the bone marrow and the liver of rodents. Due to its relative ease of commission, the bone marrow micronucleus assay will usually be conducted first; in the case of negative results it is recommended that a liver genotoxicity assay should also be conducted. The case for employing in vivo short-term genotoxicity tests to predict the possible organotropic carcinogenicity or germ cell mutagenicity of a new in vitro genotoxin is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号