首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytomegalovirus (CMV) has yielded many insights into immune escape mechanisms. Both human and mouse CMV encode a diverse array of gene products, many of which appear to modulate the immune response in the host. Some deflect the host response to infection and contribute to lifelong viral persistence while others exploit immune cells that respond to infection. Here, the viral functions that modulate and mimic host major histocompatibility complex (MHC) function will be reviewed. Viral gene products related to both classical and non-classical components of the MHC system assure the virus will persist in immunocompetent individuals. Examples of host countermeasures that neutralize viral immunomodulatory functions have emerged in the characterization of viral functions that contribute to this stand-off in CMVs that infect humans, other primates and rodents. CMV-induced disease occurs when the immune system is not yet developed, such as in the developing fetus, or when it is compromised, such as in allograft transplant recipients, suggesting that the balance between virus escape and host control is central to pathogenesis. Although evidence supports the dominant role of immune escape in CMV pathogenesis and persistence, MHC-related immunomodulatory functions have been ascribed only subtle impact on pathogenesis and the immune response during natural infection. Viral gene products that interface with the MHC system may impact natural killer cell function, antigen presentation, and T lymphocyte immune surveillance. Many also interact with other cells, particularly those in the myeloid lineage, with consequences that have not been explored. Overall, the virus-encoded modulatory functions that have been acquired by CMV likely ensure survival and adaptation to the wide range of mammalian host species in which they are found.  相似文献   

2.
Why do males and females often differ in their ability to cope with infection? Beyond physiological mechanisms, it has recently been proposed that life-history theory could explain immune differences from an adaptive point of view in relation to sex-specific reproductive strategies. However, a point often overlooked is that the benefits of immunity, and possibly the costs, depend not only on the host genotype but also on the presence and the phenotype of pathogens. To address this issue we developed an adaptive dynamic model that includes host–pathogen population dynamics and host sexual reproduction. Our model predicts that, although different reproductive strategies, following Bateman''s principle, are not enough to select for different levels of immunity, males and females respond differently to further changes in the characteristics of either sex. For example, if males are more exposed to infection than females (e.g. for behavioural reasons), it is possible to see them evolve lower immunocompetence than females. This and other counterintuitive results highlight the importance of ecological feedbacks in the evolution of immune defences. While this study focuses on sex-specific natural selection, it could easily be extended to include sexual selection and thus help to understand the interplay between the two processes.  相似文献   

3.
Pathogenesis of human immunodeficiency virus infection.   总被引:50,自引:0,他引:50  
The lentivirus human immunodeficiency virus (HIV) causes AIDS by interacting with a large number of different cells in the body and escaping the host immune response against it. HIV is transmitted primarily through blood and genital fluids and to newborn infants from infected mothers. The steps occurring in infection involve an interaction of HIV not only with the CD4 molecule on cells but also with other cellular receptors recently identified. Virus-cell fusion and HIV entry subsequently take place. Following virus infection, a variety of intracellular mechanisms determine the relative expression of viral regulatory and accessory genes leading to productive or latent infection. With CD4+ lymphocytes, HIV replication can cause syncytium formation and cell death; with other cells, such as macrophages, persistent infection can occur, creating reservoirs for the virus in many cells and tissues. HIV strains are highly heterogeneous, and certain biologic and serologic properties determined by specific genetic sequences can be linked to pathogenic pathways and resistance to the immune response. The host reaction against HIV, through neutralizing antibodies and particularly through strong cellular immune responses, can keep the virus suppressed for many years. Long-term survival appears to involve infection with a relatively low-virulence strain that remains sensitive to the immune response, particularly to control by CD8+ cell antiviral activity. Several therapeutic approaches have been attempted, and others are under investigation. Vaccine development has provided some encouraging results, but the observations indicate the major challenge of preventing infection by HIV. Ongoing research is necessary to find a solution to this devastating worldwide epidemic.  相似文献   

4.
病毒miRNA与免疫逃逸   总被引:1,自引:0,他引:1  
微小RNA(microRNA,miRNA)是一种非编码的小分子RNA,长度一般在22 nt左右,通过与mRNA 3'UTR的特异性结合介导转录后调控过程。现已鉴定出的miRNA涵盖了从植物到人类的多个物种,并参与了调节生长、免疫、凋亡等多种生命活动。最近发现,DNA病毒感染宿主时也能编码产生miRNA,并在病毒免疫逃逸中扮演着重要角色。病毒感染是一个复杂的过程,病毒需要逃脱免疫系统才能对宿主产生持续性感染,而病毒miRNA能调控宿主和自身基因表达,帮助病毒感染宿主,且因其本身没有免疫原性,而成为病毒逃避免疫应答的重要工具,但其中的分子机制尚不十分清楚。该文就病毒miRNA如何调控病毒自身与宿主基因进行免疫逃逸的近期研究作一综述。  相似文献   

5.
Many viruses have evolved strategies to either evade or hijack host cell immune programs, as a means of promoting their own reproduction. For example, the human cytomegalovirus (HCMV) immediate-early protein vMIA/UL37ex1 inhibits host cell apoptosis, and its expression during infection aids virus replication. Here it is shown that stable expression of vMIA/UL37ex1 reduces cleavage of the innate immune response-proteins MAVS and RIG-I by caspases during apoptosis. Unexpectedly, it is demonstrated that RIG-I, but not MAVS, is degraded during HCMV infection. This process occurs in a non-apoptotic manner, and provides new evidence that HCMV may have evolved a unique strategy to evade RIG-I-mediated immune responses.  相似文献   

6.
Regulatory T cells (Tregs) play a pivotal role in the maintenance of tolerance as well as in the control of immune activation, particularly during chronic infections. In the setting of HIV infection, the majority of studies have reported an increase in Treg frequency but a decrease in absolute number in all immune compartments of HIV-infected individuals. Several nonexclusive mechanisms have been postulated to explain this preferential Treg accumulation, including peripheral survival, increased proliferation, increased peripheral conversion, and tissue redistribution. The role played by Tregs during HIV infection is still poorly understood, as two opposing hypotheses have been proposed. A detrimental role of Tregs during HIV infection was suggested based on the evidence that Tregs suppress virus-specific immune responses. Conversely, Tregs could be beneficial by limiting immune activation, thus controlling the availability of HIV targets as well as preventing immune-based pathologies. Despite the technical difficulties, getting a better understanding of the mechanisms regulating Treg dynamics remains important, as it will help determine whether we can successfully manipulate Treg function or number to the advantage of the infected host. The aim of this review is thus to discuss the recent findings on Treg homeostasis and function in the setting of HIV infection.  相似文献   

7.
Bourke CD  Maizels RM  Mutapi F 《Parasitology》2011,138(2):139-159
Similarities in the immunobiology of different parasitic worm infections indicate that co-evolution of humans and helminths has shaped a common anti-helminth immune response. However, recent in vitro and immuno-epidemiological studies highlight fundamental differences and plasticity within host-helminth interactions. The 'trade-off' between immunity and immunopathology inherent in host immune responses occurs on a background of genetic polymorphism, variable exposure patterns and infection history. For the parasite, variation in life-cycle and antigen expression can influence the effector responses directed against them. This is particularly apparent when comparing gastrointestinal and tissue-dwelling helminths. Furthermore, insights into the impact of anti-helminthic treatment and co-infection on acquired immunity suggest that immune heterogeneity arises not from hosts and parasites in isolation, but also from the environment in which immune responses develop. Large-scale differences observed in the epidemiology of human helminthiases are a product of complex host-parasite-environment interactions which, given potential for exposure to parasite antigens in utero, can arise even before a parasite interacts with its human host. This review summarizes key differences identified in human acquired immune responses to nematode and trematode infections of public health importance and explores the factors contributing to these variations.  相似文献   

8.
Parasite survival in hosts mainly depends on the capacity to circumvent the host immune response. Acanthocephalan infections in gammarids are linked with decreased activity of the prophenoloxidase (ProPO) system, suggesting an active immunosuppression process. Nevertheless, experimental evidence for this hypothesis is lacking: whether these parasites affect several immune pathways is unknown and the consequences of such immune change have not been investigated. In particular, the consequences for other pathogens are not known; neither are the links with other parasite-induced manipulations of the host. Firstly, using experimental infections of Pomphorhynchus laevis we confirmed that the lower immune activity in parasitised Gammarus pulex is induced by the parasite infection. Second, using natural infections of three different parasites, P. laevis, Pomphorhynchus tereticollis and Polymorphus minutus, we showed that acanthocephalan infection was associated with reduction of the activity of the ProPO system and the haemocyte concentration (two major parameters of crustacean immunity) suggesting that immune depression is a phenomenon affecting several immunological activities. This was confirmed by the fact that acanthocephalan infection (whatever the parasite species) was linked to a lower efficiency to eliminate a bacterial infection. The result suggests a cost of parasite immune depression. Finally, acanthocephalans are also known to induce behavioural alterations in the intermediate host which favour their transmission to definitive hosts. We did not find any correlation between behavioural and immunological alterations in both experimentally and naturally-infected gammarids. Overall, this study suggests that whilst immune depression might be beneficial to acanthocephalan survival within the intermediate gammarid host, it might also be costly if it increases host mortality to additional infections before transmission of the parasite.  相似文献   

9.
Many components of host–parasite interactions have been shown to affect the way virulence (i.e. parasite‐induced harm to the host) evolves. However, coevolution of multiple parasite traits is often neglected. We explore how an immunosuppressive adaptation of parasites affects and coevolves with virulence in multiple infections. Applying the adaptive dynamics framework to epidemiological models with coinfection, we show that immunosuppression is a double‐edged sword for the evolution of virulence. On one hand, it amplifies the adaptive benefit of virulence by increasing the abundance of coinfections through epidemiological feedbacks. On the other hand, immunosuppression hinders host recovery, prolonging the duration of infection and elevating the cost of killing the host (as more opportunities for transmission will be forgone if the host dies). The balance between the cost and benefit of immunosuppression varies across different background mortality rates of hosts. In addition, we find that immunosuppression evolution is influenced considerably by the precise trade‐off shape determining the effect of immunosuppression on host recovery and susceptibility to further infection. These results demonstrate that the evolution of virulence is shaped by immunosuppression while highlighting that the evolution of immune evasion mechanisms deserves further research attention.  相似文献   

10.
Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions. For cynomolgus macaques housed at such a facility, we used a combination of serial blood quantitative PCR (qPCR) and hemoculture to confirm infection in >92% of seropositive animals, although each method alone failed to detect infection in >20% of cases. Parasite isolates obtained from 43 of the 64 seropositive macaques were of 2 broad genetic types (discrete typing units, (DTU’s) I and IV); both within and between these DTU groupings, isolates displayed a wide variation in growth characteristics and virulence, elicited host immune responses, and susceptibility to drug treatment in a mouse model. Likewise, the macaques displayed a diversity in T cell and antibody response profiles that rarely correlated with parasite DTU type, minimum length of infection, or age of the primate. This study reveals the complexity of infection dynamics, parasite phenotypes, and immune response patterns that can occur in a primate group, despite being housed in a uniform environment at a single location, and the limited time period over which the T. cruzi infections were established.  相似文献   

11.
The group A streptococci (GAS, Streptococcus pyogenes) are important human pathogens which can cause a variety of diseases, ranging from mild infections to very severe invasive diseases. In recent years, evidence has been accumulated that host genetic factors have a major influence on the outcome of streptococcal infections. Variability in the degree of susceptibility of different inbred mouse strains to infection with GAS has demonstrated that the host genetic background largely determines the susceptibility of mice to this pathogen. This information is particularly useful for studying the immune mechanisms underlying disease susceptibility in mice, and provides an entry point for the identification of host defence loci. This paper reviews the recent advances in the characterisation of pathogenic mechanisms associated with the development of GAS-induced septic shock in the mouse model and outlines the current knowledge regarding the genetic control of immune responses to Group A streptococcus in mice.  相似文献   

12.
13.
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virusinduced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.  相似文献   

14.
15.
Interferon production is an important defence against viral replication and its activation is an attractive therapeutic target. However, it has long been known that viruses perpetually evolve a multitude of strategies to evade these host immune responses. In recent years there has been an explosion of information on virus-induced alterations of the host immune response that have resulted from data-rich omics technologies. Unravelling how these systems interact and determining the overall outcome of the host response to viral infection will play an important role in future treatment and vaccine development. In this review we focus primarily on the interferon pathway and its regulation as well as mechanisms by which respiratory RNA viruses interfere with its signalling capacity.  相似文献   

16.
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host’s immune response to certain bacteria when antibiotics are not completely effective.  相似文献   

17.
18.
Infections elicit diverse responses in the host that include activation of the innate immune system, inflammation and cell death. Pathogen-triggered cell death is manifested by various morphologies indicative of apoptosis, pyroptosis, oncosis or autophagic cell death. The question of whether cell death performs a physiologic function during infection is key to understanding host-pathogen interactions and pathogenesis, and devising targeted therapeutic strategies for infectious diseases. In this review, we examine the different modes of cell death employed by the host during infection, the strategies used by pathogens to manipulate the cell death process and the outcome of cell death, that is, whether it is protective for the host or on the contrary favorable for pathogen dissemination. The pathways leading to cell death by infection are discussed with a focus on the role of pattern recognition receptors in the activation of survival and death effectors.  相似文献   

19.
TLRs是一类古老的天然模式识别分子,通过识别病毒的PAMPs,活化依赖和非依赖于MyD88的信号通路,诱导IFNs、促炎性细胞因子和趋化因子等分子的释放和表达,清除病毒的感染;同时,病毒为了感染宿主,采用多种免疫逃避策略干扰机体TLRs的信号,尤其调节MyD88、NF-κB、TRIF和IRFs等重要信号分子,以逃避机体天然PRRs的监视、识别和清除。因此,本文重点以VACV、HCV和HIV为例,介绍病毒感染对宿主TLRs模式识别与免疫应答信号的调节,以进一步理解病毒与宿主相互作用的复杂性,为病毒病的有效防治提供理论依据。  相似文献   

20.
The hookworm Necator americanus establishes infections of impressive longevity in the immunologically hostile environment of its human host. In the process, it promotes pronounced T-helper 2 (Th2) cell activity, which in turn seemingly affords the host at least a degree of protection. Given the relatively asymptomatic nature of infection, we argue here that Necator americanus might be approaching a mutualistic symbiotic relationship with humans. In our view, infection is controlled by the immune system while being supported by a subtle immune-evasion strategy that is tolerated and possibly beneficial to the host in certain immunological circumstances, such as in counterbalancing potentially damaging Th1 responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号