首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, treatment of Tamm-Horsfall glycoprotein (THp) from different donors with endo-beta-galactosidase has been shown to liberate a tetra- and a Sd(a)-active pentasaccharide, concluding the presence of N-linked carbohydrate chains containing additional N - acetyllactosamine units. These type of oligosaccharides were not found in a detailed structure elucidation of the carbohydrate moiety of THp of one male donor, suggesting a donor-specific feature for these type of structures. Therefore, THp was isolated from four healthy male donors and each subjected to endo-beta-galactosidase treatment in order to release these tetra- and Sd(a)-active pentasaccharide. Differences were observed in the total amount of released tetra- and Sda-active pentasaccharide of the used donors (42, 470, 478, 718 microg/100 mg THp), indicating that the presence of repeating N-acetyllactosamine units incorporated into the N-glycan moiety of THp is donor specific. Furthermore, a higher expression of the Sd(a) determinant on antennae which display N-acetyllactosamine elongation was observed, suggesting a better accessibility for the beta-N-acetylgalactosaminyltransferase. In order to characterize the N-glycans containing repeating N- acetyllactosamine units, carbohydrate chains were enzymatically released from THp and isolated. The tetraantennary fraction, which accounts for more than 33% of the total carbohydrate moiety of THp, was used to isolate oligosaccharides containing additional N - acetyllactosamine units. Five N-linked tetraantennary oligosaccharides containing a repeating N-acetyllactosamine unit were identified, varying from structures bearing four Sd(a) determinants to structures containing no Sd(a) determinant (see below). One compound was used in order to specify the branch location of the additional N- acetyllactosamine unit, and it appeared that only the Gal-6' and Gal-8' residues were occupied by a repeating N -acetyllactosamine unit.   相似文献   

2.
Collagen IV contains an amino-terminal tetramerization domain (7 S) that is involved in aggregation and cross-linking as part of the process of self-assembly of the collagen IV matrix of basement membranes. We determined the structure and location of the Asn-linked oligosaccharides of the 7 S tetramer. Two glycopeptides, GP-1 and GP-2, were isolated from tryptic digests of the 7 S tetramer and were characterized. GP-1 and GP-2 are derived from the alpha 1(IV) chain and the alpha 2(IV) chain, respectively. Each glycopeptide contained one sequence, -Asn-Xaa-Thr-, which was shown to be N-glycosylated at Asn, corresponding to position 126 of the alpha 1 chains and 138 of the alpha 2 chain. 1H NMR spectroscopic analysis of the oligosaccharide is a biantennary N-acetyllactosamine type of N-linked oligosaccharide with a broad heterogeneity in the presence of the sugar residues at their nonreducing termini as indicated. [formula: see text] The location of the Asn-linked oligosaccharide units and Hyl-linked disaccharide units and their orientation with respect to the surface of the triple helix were calculated using two models. We conclude that both units are important determinants in the assembly of the 7 S tetramer.  相似文献   

3.
Galectins are a family of beta-galactoside-specific lectins bearing a conserved carbohydrate recognition domain. Interactions between galectins and poly-N-acetyllactosamine sequences are critical in a variety of biological processes. Galectin-9, a member of the galectin family, has two carbohydrate recognition domains at both the N- and C-terminal regions. Here we report the crystal structure of the human galectin-9 N-terminal carbohydrate recognition domain in complex with N-acetyllactosamine dimers and trimers. These complex structures revealed that the galectin-9 N-terminal carbohydrate recognition domain can recognize internal N-acetyllactosamine units within poly-N-acetyllactosamine chains. Based on these complex structures, we propose two putative recognition modes for poly-N-acetyllactosamine binding by galectins.  相似文献   

4.
The occurrence and distribution of the repeating disaccharide [Gal beta 1,4GlcNAc beta 1,3] in the different types of Asn-linked oligosaccharides in mouse lymphoma BW5147 cells have been studied. Glycopeptides were prepared from cells grown in medium containing [6-3H]galactose, and the bi-, tri-, and tetraantennary Asn-linked oligosaccharides were fractionated by serial lectin affinity chromatography on concanavalin A-Sepharose, pea lectin -Sepharose, leukoagglutinating phytohemagglutinin-agarose, and Datura stramonium agglutinin-agarose. As described in this report, the latter lectin binds glycopeptides that contain either the repeating N-acetyllactosamine sequence or an outer mannose residue substituted at C-2 and C-6 by N-acetyllactosamine. The isolated glycopeptides were subjected to methylation analysis, specific exoglycosidase treatments, and digestion with Escherichia freundii endo-beta-galactosidase. Our data indicate that approximately two-thirds of the tetraantennary and one-half of the triantennary Asn-linked oligosaccharides contain repeating N-acetyllactosamine sequences in at least one branch. Many of the repeating sequences contain an additional galactose residue linked alpha 1,3 to a penultimate galactose residue. By contrast, less than 10% of the biantennary oligosaccharides contain the repeating disaccharide. The distribution of the repeating N-acetyllactosamine unit was also examined in a cell line ( PHAR 2.1) that is deficient in UDP-GlcNAc:alpha-mannoside beta 1,6-N-acetylglucosaminyltransferase. These cells are unable to synthesize tetraantennary and certain triantennary species and instead accumulate biantennary oligosaccharides. The total content of repeating N-acetyllactosamine units is greatly decreased in this line, and those that are present are found predominantly in triantennary Asn-linked oligosaccharides. These results demonstrate that the repeating N-acetyllactosamine sequence occurs commonly in complex-type Asn-linked oligosaccharides in BW5147 cells but is confined primarily to tri- and teraantennary species.  相似文献   

5.
A lectin was isolated from Rana catesbiana eggs that agglutinated blood group A-erythrocytes but did not agglutinate blood group B- or 0-erythrocytes. The lectin was purified by Sephadex G-75 gel filtration and by acrylamide gel electrophoresis at pH 4.3 and was proved to be homogeneous on electrophoresis, and the molecular weight was determined as 210 000. The specificity of A-like activity seems to direct towards three monosaccharide units: GalNAcalpha1 leads to 3(or 4)-Galbeta1 leads to 4(or 3)GlcNAcbeta1 leads to R based on inhibition of A-like hemagglutination by various monosaccharides, oligosaccharides and glycolipids, and based on precipitin reaction with various glycolipids and glycoproteins with known structures. Uniquely, A-like agglutination was inhibited not only by alpha-N-acetylgalactosamine analogs but also by N-acetyllactosamine analogs. The lectin showed therefore, two correlated specificities: one directed towards alpha-N-acetylgalactosamine residue at the terminal, and the other towards the subterminal Galbeta1 leads to 4betaGlcNAc (N-acetyllactosaminyl) residue. The reactivity due to the N-acetyllactosamine structure which is also found in erythrocyte ganglioside and in H-active chain might be blocked by sialyl or alpha-L-fucosyl substitution at the terminal, as the reactivity appeared after elimination of these sugar residues. In the A structure the reactivity due to N-acetyllactosaminyl residue seems not to be blocked by the presence of alpha-N-acetylgalactosamine at the terminal as A-agglutination was strongly inhibited by N-acetyllactosamine and its analogs. Although the lectin showed a single band on electrophoresis under different conditions, there is a possibility that the lectin may be a mixture of two proteins with different specificities as mentioned above.  相似文献   

6.
The carbohydrate moieties of equine chorionic gonadotropin alpha and beta subunits were released from the protein backbones by successive treatments with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F and alkaline borohydride and then fractionated by FPLC and HPLC. The major N- and O-linked glycans of the beta subunit were characterized by 500-MHz 1H-NMR spectroscopy, showing a remarkable structural heterogeneity for the N-glycosidically linked chains, comprising mono-, di-, tri- and tri'-antennary N-acetyllactosamine type of glycans, being partly alpha 1-6 fucosylated at the Asn-bound GlcNAc residue and having alpha 2-6 and alpha 2-3 linked N-acetyl- and N-acetyl-4-O-acetylneuraminic acid residues as sialic acid constituents. Significant differences in this respect were detected for the partially characterized glycans of the alpha subunit. The major part of the O-linked carbohydrate chains, occurring solely in the beta subunit, is formed by tri-, tetra-, penta- and hexa-saccharides. There are indications for the presence of oligo(N-acetyllactosamine) units in both the N- and O-linked glycans of the beta subunit.  相似文献   

7.
Derivatives of N-acetyllactosamine carrying structurally diverse thioureido groups at galactose C3 were prepared from a C3'-azido N-acetyllactosamine derivative in a three-step reaction sequence involving azide reduction and isothiocyanate formation by thiophosgene treatment of the C3-amine, followed by reaction of the isothiocyanate with a panel of amines. Evaluation of the N-acetyllactosamine thioureas as inhibitors against galectins-1, 3, 7, 8N (N-terminal domain), and 9N (N-terminal domain) revealed thiourea-mediated affinity enhancements for galectins-1, 3, 7, and 9N. In particular, good inhibitors were discovered against galectin-7 and 9N (K(d) 23 and 47 microM, respectively, for a 3-pyridylmethylthiourea derivative), which represents more than an order of magnitude affinity enhancement over the parent natural N-acetyllactosamine.  相似文献   

8.
The haemagglutinin from the Hong Kong influenza virus A/Memphis/102/72 contains seven oligosaccharide units attached to asparagine residues 8, 22, 38, 81, 165 and 285 in the heavy chain (HA1) and to residue 154 in the light chain (HA2). The single oligosaccharide unit in HA2 and four of the oligosaccharide units of HA1 (at residues 8, 22, 38 and 81) contain the four monosaccharides N-acetylglucosamine, mannose, galactose and fucose and are of the N-acetyllactosamine (or 'complex') type. The two other oligosaccharide units on HA1 are of the oligomannoside (or 'simple') type and contain only two residues of N-acetylglucosamine and five or six residues of mannose. The data are discussed in relation to the differences in the carbohydrate compositions of other influenza haemagglutinins.  相似文献   

9.
I-branched poly-N-acetyllactosamine is a unique carbohydrate composed of N-acetyllactosamine branches attached to linear poly-N-acetyllactosamine, which is synthesized by I-branching beta1, 6-N-acetylglucosaminyltransferase. I-branched poly-N-acetyllactosamine can carry bivalent functional oligosaccharides such as sialyl Lewisx, which provide much better carbohydrate ligands than monovalent functional oligosaccharides. In the present study, we first demonstrate that I-branching beta1, 6-N-acetylglucosaminyltransferase cloned from human PA-1 embryonic carcinoma cells transfers beta1,6-linked GlcNAc preferentially to galactosyl residues of N-acetyllactosamine close to nonreducing terminals. We then demonstrate that among various beta1, 4-galactosyltransferases (beta4Gal-Ts), beta4Gal-TI is most efficient in adding a galactose to linear and branched poly-N-acetyllactosamines. When a beta1,6-GlcNAc branched poly-N-acetyllactosamine was incubated with a mixture of beta4Gal-TI and i-extension beta1,3-N-acetylglucosaminyltransferase, the major product was the oligosaccharide with one N-acetyllactosamine extension on the linear Galbeta1-->4GlcNAcbeta1-->3 side chain. Only a minor product contained galactosylated I-branch without N-acetyllactosamine extension. This finding was explained by the fact that beta4Gal-TI adds a galactose poorly to beta1,6-GlcNAc attached to linear poly-N-acetyllactosamines, while beta1, 3-N-acetylglucosaminyltransferase and beta4Gal-TI efficiently add N-acetyllactosamine to linear poly-N-acetyllactosamines. Together, these results strongly suggest that galactosylation of I-branch is a rate-limiting step in I-branched poly-N-acetyllactosamine synthesis, allowing poly-N-acetyllactosamine extension mostly along the linear poly-N-acetyllactosamine side chain. These findings are entirely consistent with previous findings that poly-N-acetyllactosamines in human erythrocytes, PA-1 embryonic carcinoma cells, and rabbit erythrocytes contain multiple, short I-branches.  相似文献   

10.
Serum transferrin from a child with carbohydrate deficient syndrome type II was isolated by immunoaffinity chromatography and separated into minor and major fractions by fast protein liquid chromatography. The structure of the glycans released from the major fraction by hydrazinolysis was established by application of methanolysis and 1H-NMR spectroscopy. The results led to the identification of an N-acetyllactosamininic type monosialylated, monoantennary Man(1-3) linked glycan. By electrospray-mass spectrometry analysis, the whole serum transferrin was separated into at least seven species (I to VII) with molecular masses ranging from 77 958 to 79 130 Da. On the basis of a polypeptide chain molecular mass of 75 143 Da, it was calculated that the major transferrin species III (78 247 Da) contains two monosialylated monoantennary glycans. The molecular mass of transferrin species V and VI (78 678 and 78 971 Da) suggests that one of their two glycans contains an additional N-acetyllactosamine and a sialylated N-acetyllactosamine units, respectively. Transferrin species I and V were found to correspond to the desialylated forms of species III and VI. The abnormal glycan structures can be explained by a defect in the N-acetylglucosaminyltransferase II activity [Charuk et al. (1995) Eur J Biochem 230: 797-805].  相似文献   

11.
We set out to determine the expression profiles of glycoproteins possessing N-acetyllactosamine, a precursor carbohydrate of sialyl Le(x), during colorectal cancer development. We immunohistochemically analyzed the distribution of N-acetyllactosamine as well as of beta4GalT-I, a member of the beta1, 4-galactosyltransferase family responsible for N-acetyllactosamine biosynthesis, in normal mucosa and in adenoma and carcinoma of the human colorectum. Using monoclonal antibody H11, N-acetyllactosamine was barely detectable in the normal mucosa. In low-grade adenoma, however, N-acetyllactosamine was weakly but definitely expressed on the cell surface, and its expression level was moderately increased in high-grade adenoma and markedly increased in carcinoma in situ as well as in advanced carcinoma. To detect beta4GalT-I, we used a newly developed polyclonal antibody (designated A18G), which is specific for the stem region of human beta4GalT-I. Faint expression of beta4GalT-I was detectable in normal mucosa, and the expression level was moderately increased in low-grade adenoma and in high-grade adenoma and markedly increased in carcinoma in situ and advanced carcinoma. The expression of N-acetyllactosamine was highly correlated with the expression of beta4GalT-I in these tumor cells. These results indicate that the expression level of beta4GalT-I is apparently enhanced during tumorigenesis in the colorectum and that beta4GalT-I mostly directs the carcinoma-associated expression of N-acetyllactosamine on the colorectal tumor cell surface. (J Histochem Cytochem 47:1593-1601, 1999)  相似文献   

12.
The galectins are a family of beta-galactoside-binding animal lectins with a conserved carbohydrate recognition domain (CRD). They have a high affinity for small beta-galactosides, but binding specificity for complex glycoconjugates varies considerably within the family. The ligand recognition is essential for their proper function, and the structures of several galectins have suggested their mechanism of carbohydrate binding. Galectin-9 has two tandem CRDs with a short linker, and we report the crystal structures of mouse galectin-9 N-terminal CRD (NCRD) in the absence and the presence of four ligand complexes. All structures form the same dimer, which is quite different from the canonical 2-fold symmetric dimer seen for galectin-1 and -2. The beta-galactoside recognition mechanism in the galectin-9 NCRD is highly conserved among other galectins. In the apo form structure, water molecules mimic the ligand hydrogen-bond network. The galectin-9 NCRD can bind both N-acetyllactosamine (Galbeta1-4GlcNAc) and T-antigen (Galbeta1-3GalNAc) with the proper location of Arg-64. Moreover, the structure of the N-acetyllactosamine dimer (Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc) complex shows a unique binding mode of galectin-9. Finally, surface plasmon resonance assay showed that the galectin-9 NCRD forms a homophilic dimer not only in the crystal but also in solution.  相似文献   

13.
Gelatinase B (MMP-9) and galectin-3 are widely known to participate in tumor cell invasion and metastasis. Glycans derived from MMP-9 expressed in MCF-7 breast cancer and THP-1 myeloid leukemia cells were compared with those from MMP-9 expressed in natural neutrophils. The many O-linked glycans of neutrophil gelatinase B presented a cluster of mainly galactosylated core II structures, 46% of which were ligands for galectin-3; 11% contained two to three N-acetyllactosamine repeating units that are high-affinity ligands for the lectin. The glycan epitopes thus provide MMP-9 with both high-affinity and (presumably) high-avidity interactions with galectin-3. In contrast, the O-glycans released from MMP-9 expressed in MCF-7 and THP-1 cells were predominantly sialylated core I structures. Only 10% of MCF-7 and THP-1 gelatinase B O-glycans were ligands for galectin-3 and contained only a maximum single N-acetyllactosamine repeat. Consistent with the glycan analysis, surface plasmon resonance binding assays indicated that the cancer-associated glycoforms of MMP-9 bound galectin-3 with an affinity and avidity significantly reduced compared with those of the natural neutrophil MMP-9. Galectin-3 exists as a multimer that also binds laminin, providing a means of localizing neutrophil MMP-9 in the extracellular matrix (ECM). The analytical data presented here suggest that MMP-9 glycoforms secreted by tumor cells are unlikely to be tethered at the site of secretion, thus promoting more extensive cleavage of the ECM and providing a rationale for the contribution that gelatinase B makes to cancer cell metastasis.  相似文献   

14.
Novel chromogenic substrates for endo-beta-galactosidase were designed on the basis of the structural features of keratan sulfate. Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (2), which consists of two repeating units of N-acetyllactosamine, was synthesized enzymatically by consecutive additions of GlcNAc and Gal residues to p-nitrophenyl beta-N-acetyllactosaminide. In a similar manner, GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (1), GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (3), Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (4), Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (5), and Galbeta1-6GlcNAcbeta1-3Galbeta1-4Glcbeta-pNP (6) were synthesized as analogues of 2. Endo-beta-galactosidases released GlcNAcbeta-pNP or Glcbeta-pNP in an endo-manner from each substrate. A colorimetric assay for endo-beta-galactosidase was developed using the synthetic substrates on the basis of the determination of p-nitrophenol liberated from GlcNAcbeta-pNP or Glcbeta-pNP formed by the enzyme through a coupled reaction involving beta-N-acetylhexosaminidase (beta-NAHase) or beta-d-glucosidase. Kinetic analysis by this method showed that the value of Vmax/Km of 2 for Escherichia freundii endo-beta-galactosidase was 1.7-times higher than that for keratan sulfate, indicating that 2 is very suitable as a sensitive substrate for analytical use in an endo-beta-galactosidase assay. Compound 1 still acts as a fairly good substrate despite the absence of a Gal group in the terminal position. In addition, the hydrolytic action of the enzyme toward 2 was shown to be remarkably promoted compared to that of 4 by the presence of a 2-acetamide group adjacent to the p-nitrophenyl group. This was the same in the case of a comparison of 1 and 3. Furthermore, the enzyme also catalysed a transglycosylation on 1 and converted it into GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (9) and GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta-pNP (10) as the major products, which have N-acetyllactosamine repeating units.  相似文献   

15.
Human serum was shown to contain N-acetyllactosamine: N-acetylglucosaminyltransferase activity. The reaction product was hydrolyzed by beta-N-acetylglucosaminidase and released [14C]N-acetylglucosamine, indicating that the N-acetylglucosaminyl residue was beta-linked to N-acetyllactosamine. Methylation and hydrolysis of the reaction product yielded 2,4,6-trimethyl[3H]galactose, indicating that the N-acetylglucosaminyl residue was introduced at position C-3 of the terminal galactose of N-acetyllactosamine. In our experiments, 2,3,4-trimethyl[3H]galactose was not detected. Substrate competition studies between N-acetyllactosamine and lactose showed that this enzyme also catalyzed the transfer of N-acetylglucosamine from UDP-N-acetylglucosamine to lactose. Since the Km value for N-acetyllactosamine, which was 7.0 mM, was approximately a fourth of that for lactose (29.8 mM), N-acetyllactosamine was more effective than lactose as an acceptor.  相似文献   

16.
Normal human urine was found to contain beta (1-3)N-acetylglucosaminyltransferase catalyzing the transfer of N-acetylglucosamine from UDP-GlcNAc to N-acetyllactosamine and lactose. Lacto-N-tetraose which carries the terminal Gal beta (1-3)GlcNAc structure was a poor acceptor. The product of the transferase reaction with N-acetyllactosamine as acceptor was identified by methylation analysis as GlcNAc beta (1-3)Gal beta (1-4)GlcNAc. The beta-linkage of the GlcNAc in the synthesized trisaccharide was confirmed by the action of the specific beta-N-acetylhexosaminidase. The enzyme requires Mn2+ ions for its activity, shows a broad pH optimum from 7 to 9, and appears to have a molecular weight of about 200,000 as estimated by Sephadex gel filtration.  相似文献   

17.
Biologically active recombinant human follitropin has been expressed in Chinese hamster ovary cells. The carbohydrate chains of the recombinant glycoprotein hormone were enzymatically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The oligosaccharides were separated from the N-deglycosylated protein by gel-permeation chromatography on Bio-Gel P-100, and fractionated by a combination of FPLC on Mono Q and HPLC on Lichrosorb-NH2. The structures of the carbohydrate chains were determined by 500- or 600-MHz 1H-NMR spectroscopy. The following types of carbohydrates occur: monosialylated diantennary (10%), disialylated diantennary (43%), disialylated tri-antennary (5%), trisialylated tri-antennary (13%), trisialylated tri'-antennary (8%), and tetrasialylated tetraantennary (12%) N-acetyllactosamine type of carbohydrate chains, all bearing exclusively alpha 2-3-linked N-acetylneuraminic acid (Neu5Ac). Previously, for pituitary follitropin mono-, di-, tri-, tri'-, and tetra-antennary oligosaccharides containing alpha 2-3- as well as alpha 2-6-linked Neu5Ac residues were reported. The bisecting GlcNAc residues present in native follitropin were not detected in the recombinant glycoprotein. Of the oligosaccharides 29% have an alpha 1-6-linked Fuc residue at the asparagine-bound GlcNAc, whereas this amount is about 50% in pituitary follitropin. In some of the tri-, tri'- and tetra-antennary oligosaccharide fractions small amounts (less than 5%) of compounds were detected having one or more additional N-acetyllactosamine units.  相似文献   

18.
The highly microheterogeneous, N-glycosidically linked oligosaccharides in the glycoproteins of Friend murine leukemia virus (as produced by Eveline cells) were liberated with endo-beta-N-acetylglucosaminidase H and by alkaline hydrolysis. They were fractionated (as desialylated oligosaccharitols) by gel filtration and by concanavalin A affinity chromatography, and the major fractions were analyzed by methylation-gas chromatography-mass spectrometry, by digestion with exoglycosidases, and, especially, by one- and two-dimensional proton nuclear magnetic resonance spectroscopy. Guidelines for qualitative and quantitative analysis of complex oligosaccharide mixtures by NMR were worked out and the results compared with those obtained by methylation analysis. It was found that these major fractions consist of bi-, tri-, and tetraantennary oligosaccharitols of the "complex" type (comprising a minority of species with N-acetyllactosamine repeating units), which are, in part, substituted by nonreducing terminal Gal alpha (1----3) and/or bisecting GlcNAc beta (1----4) residues.  相似文献   

19.
A condensation reaction between N-acetyllactosamine and glycerol was directly catalyzed by using a commercially available cellulase preparation from Trichoderma reesei. 1-O-beta-N-Acetyllactosaminyl-(R, S)-glycerols (1) were readily synthesized in a 5% yield based on the N-acetyllactosamine added and conveniently isolated by two-step column chromatographies. The use of a partially purified enzyme increased 2.3-fold the yield of 1, compared to that of the crude enzyme containing beta-D-galactosidase activity. When various alkanols (n:2-4) were used in the condensation reaction, the corresponding alkyl beta-N-acetyllactosaminides were obtained in yields of 0.3-1.1% of the desired compounds.  相似文献   

20.
Electrophoretic analysis of endoglycosidase-treated tissue plasminogen activator obtained from human melanoma cells showed that the heterogeneity observed for the protein in these preparations is caused by an N-glycosidically linked N-acetyllactosamine type of carbohydrate chain which is present in about 50% of the molecules. An oligomannose type and an N-acetyllactosamine type of glycan is present in all molecules. Three glycopeptides were isolated and characterized by 1H-NMR, sugar determination, methylation analysis and amino acid determination. The exact attachment site for each of the three glycans could be deduced from the amino acid compositions of the glycopeptides. Asn-117 carries the oligomannose type of glycan, the structure of which was completely determined. Asn-184 is the site where the presence or absence of a biantennary N-acetyllactosamine type of glycan causes the size heterogeneity. The third N-glycosylation site, Asn-448, was found to carry a triantennary or tetraantennary N-acetyllactosamine type of carbohydrate chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号