首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence of bifurcated three-center hydrogen bonds in proteins   总被引:2,自引:0,他引:2  
R Preissner  U Egner  W Saenger 《FEBS letters》1991,288(1-2):192-196
Analysis of 13 high-resolution protein X-ray crystal structures shows that 1204 (24%) of all the 4974 hydrogen bonds are of the bifurcated three-center type with the donor X-H opposing two acceptors A1, A2. They occur systematically in alpha-helices where 90% of the hydrogen bonds are of this type; the major component is (n + 4)N-H ... O = C(n) as expected for a 3.6(13) alpha-helix, and the minor component is (n + 4)N-H ... O = C(n + 1), as observed in 3(10) helices; distortions at the C-termini of alpha-helices are stabilized by three-center bonds. In beta-sheets 40% of the hydrogen bonds are three-centered. The frequent occurrence of three-center hydrogen bonds suggests that they should not be neglected in protein structural studies.  相似文献   

2.
The statistical analysis of hydrogen bonds distribution in space structures of globular proteins has been done. The parameters of H-bonds in the different secondary structures of globular proteins were collected. In alpha-helices besides the canonical 1-5 H-bonds (the mean length 3 A), 1-4 H-bonds were observed (the mean length 3.2 A). The histograms of length and angular distributions of the bonds are presented. It was found on the basis of quantum chemistry calculations that most H-bonds in alpha-helices are double or bifurcated.  相似文献   

3.
Sulfur atoms have been known to participate in hydrogen bonds (H‐bonds) and these sulfur‐containing H‐bonds (SCHBs) are suggested to play important roles in certain biological processes. This study aims to comprehensively characterize all the SCHBs in 500 high‐resolution protein structures (≤1.8 Å). We categorized SCHBs into six types according to donor/acceptor behaviors and used explicit hydrogen approach to distinguish SCHBs from those of nonhydrogen bonding interactions. It is revealed that sulfur atom is a very poor H‐bond acceptor, but a moderately good H‐bond donor. In α‐helix, considerable SCHBs were found between the sulphydryl group of cysteine residue i and the carbonyl oxygen of residue i‐4, and these SCHBs exert effects in stabilizing helices. Although for other SCHBs, they possess no specific secondary structural preference, their geometric characteristics in proteins and in free small compounds are significantly distinct, indicating the protein SCHBs are geometrically distorted. Interestingly, sulfur atom in the disulfide bond tends to form bifurcated H‐bond whereas in cysteine‐cysteine pairs prefer to form dual H‐bond. These special H‐bonds remarkably boost the interaction between H‐bond donor and acceptor. By oxidation/reduction manner, the mutual transformation between the dual H‐bonds and disulfide bonds for cysteine‐cysteine pairs can accurately adjust the structural stability and biological function of proteins in different environments. Furthermore, few loose H‐bonds were observed to form between the sulphydryl groups and aromatic rings, and in these cases the donor H is almost over against the rim rather than the center of the aromatic ring. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

4.
Short hydrogen bonds are present in many chemical and biological systems. It is well known that these short hydrogen bonds are found in the active site of enzymes and aid enzyme catalysis. This study aims to systematically characterize all short hydrogen bonds from a nonredundant dataset of protein structures. The study has revealed that short hydrogen bonds are commonly found in proteins and are widely present in different regions of the protein chain, such as the backbone or side chain, and in different secondary structural regions such as helices, strands and turns. The frequency of occurrence of donors and acceptors from the charged side chains as well as from the neutral backbone atoms is equally high. This suggests that short hydrogen bonds in proteins occur either due to increased strength or due to geometrical constraints and this has been illustrated from several examples.  相似文献   

5.
It is often assumed that the peptide backbone forms a substantial number of additional hydrogen bonds when a protein unfolds. We challenge that assumption in this article. Early surveys of hydrogen bonding in proteins of known structure typically found that most, but not all, backbone polar groups are satisfied, either by intramolecular partners or by water. When the protein is folded, these groups form approximately two hydrogen bonds per peptide unit, one donor or acceptor for each carbonyl oxygen or amide hydrogen, respectively. But when unfolded, the backbone chain is often believed to form three hydrogen bonds per peptide unit, one partner for each oxygen lone pair or amide hydrogen. This assumption is based on the properties of small model compounds, like N-methylacetamide, or simply accepted as self-evident fact. If valid, a chain of N residues would have approximately 2N backbone hydrogen bonds when folded but 3N backbone hydrogen bonds when unfolded, a sufficient difference to overshadow any uncertainties involved in calculating these per-residue averages. Here, we use exhaustive conformational sampling to monitor the number of H-bonds in a statistically adequate population of blocked polyalanyl-six-mers as the solvent quality ranges from good to poor. Solvent quality is represented by a scalar parameter used to Boltzmann-weight the population energy. Recent experimental studies show that a repeating (Gly-Ser) polypeptide undergoes a denaturant-induced expansion accompanied by breaking intramolecular peptide H-bonds. Results from our simulations augment this experimental finding by showing that the number of H-bonds is approximately conserved during such expansion⇋compaction transitions.  相似文献   

6.
Short tracts of the homopolymer dA.dT confer intrinsic curvature on the axis of the DNA double helix. This phenomenon is assumed to be a consequence of such tracts adopting a stable B'-DNA conformation that is distinct from B-form structure normally assumed by other DNA sequences. The more stable B' structure of dA.dT tracts has been attributed to several possible stabilizing factors: (1) optimal base stacking interactions consequent upon the high propeller twist, (2) bifurcated hydrogen bonds between adjacent dA.dT base-pairs, (3) stacking interactions involving the dT methyl groups, and finally (4) a putative spine of ordered water molecules in the minor groove. DNA oligodeoxynucleotides have been synthesized that enable these hypotheses to be tested; of particular interest is the combination of effects due to bifurcation (2) and methylation of the pyrimidines nucleotides (3). The data indicate that neither bifurcated hydrogen bonds nor pyrimidine methyl groups nor both are essential for DNA curvature. The data further suggest that the influence of the minor groove spine of hydration on the B'-formation is small. The experiments favor the hypothesis that base stacking interactions are the dominant force in stabilizing the B'-form structure.  相似文献   

7.
8.
Statistics are collected and analyzed for the possibility of hydrogen bonding in the secondary structures of globular proteins, based on geometric criteria. Double and bifurcated bonds are considered as pairs of admissible H-bonds with two proton donors or two proton acceptors, respectively. Most of such bonds belong to peptide groups in α-helices, with O i …N i + 3 nearly as frequent as O i …N i + 4; in contrast, most of the 3/10-helical segments are too short to have any. Alternating double and bifurcated bonds in α-helices form an apparently cooperative network structure. A typical α-helical segment perhaps carries two stretches of the H-bond network broken in the middle. The constituent H-bonds are nonlinear: the hydrogen atom is off the straight line connecting the proton donor and proton acceptor atoms. This deflection is larger for H i + 3 vs. bond line O i −N i + 3 than for H i + 4 vs. O i −N i + 4, and though the two kinds of bond have about the same length (exceeding those typical of low-molecular compounds), O i …N i + 4 must be stronger than O i …N i + 3. Double/bifurcated bonds are also not coplanar, i.e., hydrogen atoms are beyond the N…O…N (or O…N…O) plane. The text was submitted by the authors in English.  相似文献   

9.
10.
Loganathan D  Aich U 《Glycobiology》2006,16(4):343-348
Elucidation of the intra- and intermolecular carbohydrate-protein interactions would greatly contribute toward obtaining a better understanding of the structure-function correlations of the protein-linked glycans. The weak interactions involving C-H...O have recently been attracting immense attention in the domain of biomolecular recognition. However, there has been no report so far on the occurrence of C-H...O hydrogen bonds in the crystal structures of models and analogs of N-glycoproteins. We present herein an analysis of C-H...O interactions in the crystal structures of all N-glycoprotein linkage region models and analogs. The study reveals a cooperative network of bifurcated hydrogen bonds consisting of N-H...O and C-H...O interactions seen uniquely for the models. The cooperative network consists of two antiparallel chains of bifurcated hydrogen bonds, one involving N1-H, C2'-H and O1' of the aglycon moiety and the other involving N2-H, C1-H and O1' of the sugar. Such bifurcated hydrogen bonds between the core glycan and protein are likely to play an important role in the folding and stabilization of proteins.  相似文献   

11.
Fernández A 《FEBS letters》2002,527(1-3):166-170
A few backbone hydrogen bonds (HBS) in native protein folds are poorly protected from water attack: their desolvation shell contains an inordinately low number of hydrophobic residues. Thus, an approach by solvent-structuring moieties of a binding partner should contribute significantly to enhance their stability. This effect represents an important factor in the site specificity inherent to protein binding, as inferred from a strong correlation between poorly desolvated HBs and binding sites. The desolvation shells were also examined in a dynamic context: except for a few singular under-protected bonds, the size of desolvation shells is preserved along the folding trajectory.  相似文献   

12.
Covalent attachment of hydrogen to the donor atom may be not an essential characteristic of stable hydrogen bonds. A positively charged particle (such as a proton), located between the two negatively charged residues, may lead to a stable interaction of the two negative residues. This paper analyzes close Asp-Glu pairs of residues in a large set of protein chains; 840 such pairs of residues were identified, of which 28% were stabilized by a metal ion, 12% by a positive residue nearby and 60% are likely to be stabilized by a proton. The absence of apparent structural constraints, secondary structure preferences, somewhat lower B-factors and a distinct correlation between pH and the minimal O-O distance in carboxylate pairs suggest that most of the abnormally close pairs could indeed be stabilized by a shared proton. Implications for protein stability and modeling are discussed.  相似文献   

13.
Data on chromosome mutagenesis levels in populations of aquatic organisms in the Black and the Aegean Seas, the Danube and the Dnieper Rivers, the 30-km zone of ChNPP are presented. The highest level of mutagenesis was observed in hydrobionts populations in the 10-km zone of the ChNPP. The obvious damaged effects of ionizing radiation were noted only in these populations. The comparison of the adaptation rate of aquatic crustaceans and worms populations with different reproduction modes was made. It is found that the studied species with sexual reproduction have higher rate of adaptation to the pollution in comparison with species with prevalent asexual reproduction. Hypothetic mechanisms of population adaptation are discussed. On the basis of species and populations characteristics, the criteria for the identification of "critical" populations (species) and an algoritm of ecological risk assessment for them are proposed.  相似文献   

14.
Adamian L  Liang J 《Proteins》2002,47(2):209-218
Polar and ionizable amino acid residues are frequently found in the transmembrane (TM) regions of membrane proteins. In this study, we show that they help to form extensive hydrogen bond connections between TM helices. We find that almost all TM helices have interhelical hydrogen bonding. In addition, we find that a pair of contacting TM helices is packed tighter when there are interhelical hydrogen bonds between them. We further describe several spatial motifs in the TM regions, including "Polar Clamp" and "Serine Zipper," where conserved Ser residues coincide with tightly packed locations in the TM region. With the examples of halorhodopsin, calcium-transporting ATPase, and bovine cytochrome c oxidase, we discuss the roles of hydrogen bonds in stabilizing helical bundles in polytopic membrane proteins and in protein functions.  相似文献   

15.
Manikandan K  Ramakumar S 《Proteins》2004,56(4):768-781
A comprehensive database analysis of C--H...O hydrogen bonds in 3124 alpha-helices and their corresponding helix termini has been carried out from a nonredundant data set of high-resolution globular protein structures resolved at better than 2.0 A in order to investigate their role in the helix, the important protein secondary structural element. The possible occurrence of 5 --> 1 C--H...O hydrogen bond between the ith residue CH group and (i - 4)th residue C==O with C...O < or = 3.8 A is studied, considering as potential donors the main-chain Calpha and the side-chain carbon atoms Cbeta, Cgamma, Cdelta and Cepsilon. Similar analysis has been carried out for 4 --> 1 C--H...O hydrogen bonds, since the C--H...O hydrogen bonds found in helices are predominantly of type 5 --> 1 or 4 --> 1. A total of 17,367 (9310 of type 5 --> 1 and 8057 of type 4 --> 1) C--H...O hydrogen bonds are found to satisfy the selected criteria. The average stereochemical parameters for the data set suggest that the observed C--H...O hydrogen bonds are attractive interactions. Our analysis reveals that the Cgamma and Cbeta hydrogen atom(s) are frequently involved in such hydrogen bonds. A marked preference is noticed for aliphatic beta-branched residue Ile to participate in 5 --> 1 C--H...O hydrogen bonds involving methylene Cgamma 1 atom as donor in alpha-helices. This may be an enthalpic compensation for the greater loss of side-chain conformational entropy for beta-branched amino acids due to the constraint on side-chain torsion angle, namely, chi1, when they occur in helices. The preference of amino acids for 4 --> 1 C--H...O hydrogen bonds is found to be more for Asp, Cys, and for aromatic residues Trp, Phe, and His. Interestingly, overall propensity for C--H...O hydrogen bonds shows that a majority of the helix favoring residues such as Met, Glu, Arg, Lys, Leu, and Gln, which also have large side-chains, prefer to be involved in such types of weak attractive interactions in helices. The amino acid side-chains that participate in C--H...O interactions are found to shield the acceptor carbonyl oxygen atom from the solvent. In addition, C--H...O hydrogen bonds are present along with helix stabilizing salt bridges. A novel helix terminating interaction motif, X-Gly with Gly at C(cap) position having 5 --> 1 Calpha--H...O, and a chain reversal structural motif having 1 --> 5 Calpha-H...O have been identified and discussed. Our analysis highlights that a multitude of local C--H...O hydrogen bonds formed by a variety of amino acid side-chains and Calpha hydrogen atoms occur in helices and more so at the helix termini. It may be surmised that the main-chain Calpha and the side-chain CH that participate in C--H...O hydrogen bonds collectively augment the cohesive energy and thereby contribute together with the classical N--H...O hydrogen bonds and other interactions to the overall stability of helix and therefore of proteins.  相似文献   

16.
17.
N, N-dimethylformamide (DMF) is a ‘universal’ solvent with the simplest amide structure. DMF has different interactions with many polymers and biomolecules. It is therefore necessary to study systematically the interactions in DMF itself first. In this study, both FT-IR and two molecular theoretical methods (MP2 and DFT/B3LYP) were used to study various hydrogen bonding interactions in DMF molecules based on its weak H-bonding donors CH/CH3 and strong H-bonding acceptor C = O. The possible H-bonding donors and acceptors in DMF molecules were first analysed followed by modelling the effect of different structural environments on vC = O bands in infrared spectra. Finally, H-bonding properties including distance, angles and the energy as well as the probability of H-bonding patterns were obtained. The results showed that there exist five possible different weak types of H-bonding dimers; among them, three dimers consist of a pair of weak H-bonds, whereas two other dimers have two pairs of H-bonds, leading to 14 (including eight different) H-bonds. Two types of dimers were dominant, whereas three others can be omitted.  相似文献   

18.
19.
Jiang L  Kuhlman B  Kortemme T  Baker D 《Proteins》2005,58(4):893-904
Water-mediated hydrogen bonds play critical roles at protein-protein and protein-nucleic acid interfaces, and the interactions formed by discrete water molecules cannot be captured using continuum solvent models. We describe a simple model for the energetics of water-mediated hydrogen bonds, and show that, together with knowledge of the positions of buried water molecules observed in X-ray crystal structures, the model improves the prediction of free-energy changes upon mutation at protein-protein interfaces, and the recovery of native amino acid sequences in protein interface design calculations. We then describe a "solvated rotamer" approach to efficiently predict the positions of water molecules, at protein-protein interfaces and in monomeric proteins, that is compatible with widely used rotamer-based side-chain packing and protein design algorithms. Finally, we examine the extent to which the predicted water molecules can be used to improve prediction of amino acid identities and protein-protein interface stability, and discuss avenues for overcoming current limitations of the approach.  相似文献   

20.
The effective potential between two hydrogen bonded atoms is calculated on the basis of the Lippencott-Schroeder bent bond model, taken to be a typical model interaction. We differ from other calculations in that the minimum energy configuration for the proton is treated adiabatically, its position being recomputed at each value of the larger atoms separation. We find the typical hard core to have been a consequence of an artificial restriction of the proton to a fixed angle with the larger atom axis, basically a one-dimensional assumption. Free to move in three dimensions, the proton is squeezed off the axis as the separation narrows, and the hard core feature is gone. Depending on the degree of bond bending, the anharmonicity of the bond may be diminished, eliminated, or even reversed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号