首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cadmium and mercury ions inhibited the promotion of ada and alkA gene expression in the adaptive process induced by methylating agents such as N-methyl-N-nitrosourea (MNU), methyl methanesulfonate (MMS) and methyl iodide in Escherichia coli. In fact, the induction of O6-methylguanine-DNA methyl-transferase (MGTase) by MNU was suppressed in E. coli in the presence of these metal ions. These ions potentiated mutagenesis induced by methylating agents such as MNU and MMS, but not that induced by ethylating agents, UV irradiation, or N4-aminocytidine. These comutagenic effects were observed in wild-type and umuC36 strains of E. coli but not in the ada-5 strain, which is unable to induce the adaptive response. These results suggest that the comutagenic effects of Cd2+ and Hg2+ are due to inhibition of ada and alkA gene expression promoted by methylated MGTase.  相似文献   

2.
Induction of the adaptive response by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) caused a decrease in the UV-mediated expression of both recA and sfiA genes but not of the umuDC gene. On the other hand, the adaptive response did not affect the temperature-promoted induction of SOS response in a RecA441 mutant. The inhibitory effect on the UV-triggered expression of the recA and sfiA genes was not dependent on either the alkA gene or the basal level of RecA protein, but rather required the ada gene. Furthermore, an increase in the level of the Ada protein, caused by the runaway plasmid pYN3059 in which the ada gene is regulated by the lac promoter, inhibited UV-mediated recA gene expression even in cells to which the MNNG-adaptive treatment had not been applied. This inhibitory effect of the adaptive pretreatment was not observed either in RecBC- strains or in RecBC mutants lacking exonuclease V-related nuclease activity. However, RecF- mutants showed an adaptive response-mediated decrease in UV-promoted induction of the recA gene.  相似文献   

3.
ESCHERICHIA COLI Gene Induction by Alkylation Treatment   总被引:21,自引:1,他引:20       下载免费PDF全文
Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased beta-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N' -nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes.  相似文献   

4.
5.
Gene expression in E. coli after treatment with streptozotocin   总被引:2,自引:0,他引:2  
Gene induction by the methylating agents streptozotocin (STZ), N-methyl-N-nitrosourea (MNU), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was evaluated in E. coli fusion mutants. These mutants have fusions of the lac operon to genes induced by treatment with sublethal levels of alkylating agents and were previously selected from random insertions of the Mu-dl (Apr lac) phage by screening for induction of beta-galactosidase activity in the presence of methyl methanesulfonate or MNNG. The results demonstrate that STZ differs from MNNG and MNU in failing to induce aidC expression. Further, expression of aidC after exposure to MNU and MNNG occurs only in nonaerated cultures; aeration blocks the induction. Induction of aidD, alkA, aidB, and sfiA expression occurs with all 3 agents although at markedly lower concentrations of MNNG and STZ compared to MNU. alkA and to a lesser extent aidD mutants of E. coli strains were more sensitive to these agents, while no differences were evident between wild-type and aidB or aidC fusion mutants.  相似文献   

6.
7.
Escherichia coli alkA mutants, which are deficient for an inducible DNA glycosylase, 3-methyladenine-DNA glycosylase II, are sensitive to mutagenesis by low doses of the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). As many as 90% of the alkA-dependent mutations induced by MNNG are also umuC+ dependent and thus are due to DNA lesions that are substrates for the mutagenic functions of the SOS response. A great number of these mutations are base substitutions at A . T sites, particularly A . T transversions. We discuss which DNA lesions may be responsible for these mutations. Our results show that the induction of 3-methyladenine-DNA glycosylase II, which occurs as part of the adaptive response to alkylating agents such as MNNG, significantly reduces the mutagenicity as well as the lethality of alkylation damage.  相似文献   

8.
Sodium arsenite at a non-toxic concentration was found to inhibit strongly mutagenesis induced by ultraviolet light (UV), 4-nitroquinoline-1-oxide (4NQO), furylfuramide (AF-2) and methyl methane-sulfonate (MMS) as well as spontaneous mutation in the reversion assay of E. coli WP2uvrA/pKM101. The effect was not, however, seen in the case of the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In order to elucidate the mechanism of the mutation-inhibitory effect of sodium arsenite, its action on umuC gene expression and DNA-repair systems was investigated. It was found that sodium arsenite depressed beta-galactosidase induction, corresponding to the umuC gene expression. For UV-irradiated E. coli strains possessing different DNA-repair capacities, sodium arsenite decreased the UV survival rates of WP2, WP2uvrA[uvrA] and WP67[uvrA polA], increased those of SOS-uninducible strains having either the recA+ or uvrA+ such as CM571 [recA], CM561 [lexA(Ind-)] and CM611[uvrA lexA (Ind-)], and did not affect that of the uvrA recA double mutant, WP100. From these results, we assume that sodium arsenite may have at least two roles in its antimutagenesis: as an inhibitor of umuC gene expression, and as an enhancer of the error-free repairs depending on the uvrA and recA genes.  相似文献   

9.
The effect of heat shock on the expression of some genes of Escherichia coli was tested. To avoid side effects, promoters of the genes were fused to lacZ and their expression measured by the level of beta-galactosidase. The results show that expression of umuC, recA and polB, after induction of the SOS response, was somewhat higher in the heat-shocked than in the non-shocked cells, whereas expression of ada, alkB and alkA genes, after induction of the adaptive response, was about the same. Unexpectedly, it was found that expression of lacZ from its own promoter was drastically lowered in the heat-shocked cells. This effect, however, seems not to be dependent on the induction of heat-shock proteins.  相似文献   

10.
The role of nucleotide excision repair and 3-methyladenine DNA glycosylases in removing cytotoxic lesions induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in Salmonella typhimurium and Escherichia coli cells was examined. Compared to the E. coli wild-type strain, the S. typhimurium wild-type strain was more sensitive to the same dose of MNNG. Nucleotide excision repair in both bacterial species does not contribute significantly to the survival after MNNG treatment, indicating that the observed differences in survival between S. typhimurium and E. coli should be attributed to DNA-repair systems other than nucleotide excision repair. The survival of the E. coli alkA mutant strain is seriously affected by the lack of 3-methyladenine DNA glycosylase II, accentuating the importance of this DNA-repair enzyme in protecting E. coli cells against the lethal effects of methylating agents. Following indications from our experiments, the existence of an alkA gene analogue in S. typhimurium has been questioned. Dot-blot hybridisation, using the E. coli alkA gene as a probe, was performed, and such a nucleotide sequence was not detected on S. typhimurium genomic DNA. The existence of constitutive 3-methyladenine DNA glycosylase, analogous to the E. coli Tag gene product in S. typhimurium cells, suggested by the results is discussed.  相似文献   

11.
We have shown by genetic mapping, molecular cloning, and DNA sequencing that four Escherichia coli mutants, which express the adaptive response to alkylation damage constitutively, are mutated in the ada gene. All four mutant ada genes have two GC to AT transition mutations in the coding region and encode altered Ada proteins with two amino acid substitutions in the N-terminal domain. E. coli carrying the mutated ada genes on recombinant plasmids overexpressed both the mutated ada gene and the chromosomal alkA gene. This observation indicates that the mutant Ada proteins act as strong positive regulators of the ada and alkA genes in the absence of DNA alkylation. One mutant protein, Ada-11, was shown to be a strong activator of ada gene expression in a cell-free system. An altered pattern of tryptic digestion of the Ada-11 protein compared with the wild-type Ada protein suggested that it has a different conformation. One amino acid substitution, namely methionine residue 126 replaced by isoleucine, occurred in all four mutant Ada proteins, and this mutation alone was sufficient to convert the Ada protein into a strong activator of ada and alkA gene expression in vivo.  相似文献   

12.
Nucleotide sequence of a DNA fragment containing the alkA gene and its control region has been determined using a chemical method. Only one open reading frame responsible for 3-methyladenine DNA glycosylase II was found. The hypothetical polypeptide deduced from the DNA sequence, with a molecular weight of 31,400, has an amino-terminal sequence and total amino acid composition identical to that of purified 3-methyladenine DNA glycosylase II. We constructed hybrid plasmids carrying an alkA'-lacZ' fusion, with the proper control region for alkA expression. A hybrid polypeptide with beta-galactosidase activity was formed when lac mutant cells harboring such plasmids were incubated with low doses of N-methyl-N'-nitro-N-nitrosoguanidine or methylmethane sulfonate. Other DNA-damaging agents, such as ethylmethane sulfonate, nalidixic acid, and ultraviolet light did not induce the enzyme activity. The induction was controlled by the ada and adc, but not by the recA and lexA genes.  相似文献   

13.
We used alkA'-lacZ' and umuC'-lacZ' fused genes and determined the ability of various alkylating agents to induce adaptive and SOS responses. The degree of induction of expression of these genes was quantitatively measured by a simple colorimetric assay of beta-galactosidase activity. SN1 type methylating agents, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, were more effective inducers for the alkA than for the umuC system, while SN1 type ethylating agents, such as N-ethyl-N'-nitro-N-nitrosoguanidine and N-ethyl-N-nitrosourea, were more potent inducers for the umuC than for the alkA system. Similar but less striking effects on the two systems were obtained with SN2 type alkylating agents.  相似文献   

14.
Bacillus subtilis ada operon encodes two DNA alkyltransferases.   总被引:11,自引:4,他引:7       下载免费PDF全文
  相似文献   

15.
16.
17.
The induction of SOS and adaptive responses by alkylating agents was studied in Escherichia coli mutants tagA and alkA deficient in 3-methyladenine-DNA glycosylase activities. The SOS response was measured using an sfiA::lacZ operon fusion. The sfiA operon, in the double mutant tagA alkA, is induced at 5-50-fold lower concentrations of all tested methylating and ethylating compounds, as compared to the wild-type strain. In all cases, the tagA mutation, which inactivates the constitutive and specific 3-alkyladenine-DNA glycosylase I (TagI), sensitizes the strain to the SOS response. The sensitization effect of alkA mutation, which inactivates the inducible 3-alkyladenine-DNA glycosylase II (TagII), is observed under conditions which allow the induction of the adaptive response. We conclude that the persistence of 3-methyladenine and 3-ethyladenine residues in DNA most likely leads to the induction of the SOS functions. In contrast, the adaptive response, evaluated by O6-methylguanine-DNA methyltransferase activity in cell extracts, was not affected by either tagA or alkA mutations. The results suggest that the SOS and adaptive responses use different alkylation products as an inducing "signal". However, adaptation protein TagII inhibits the induction of the SOS response to some extent, due to its action at the level of signal production. Finally, we provide conditions to improve short-term bacterial tests for the detection of genotoxic alkylating agents.  相似文献   

18.
19.
Escherichia coli has two O6-methylguanine DNA methyltransferases that repair alkylation damage in DNA and are encoded by the ada and ogt genes. The ada gene of E. coli also regulates the adaptive response to alkylation damage. The closely related species Salmonella typhimurium possesses methyltransferase activities but does not exhibit an adaptive response conferring detectable resistance to mutagenic methylating agents. We have previously cloned the ada-like gene of S. typhimurium (adaST) and constructed an adaST-deletion derivative of S. typhimurium TA1535. Unexpectedly, the sensitivity of the resulting strain to the mutagenic action of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was similar to that of the parent strain. In this study, we have cloned and sequenced the ogt-like gene of S. typhimurium (ogtST) and characterized ogtST-deletion derivatives of TA1535. The ogtST mutant was more sensitive than the parent strain to the mutagenicity of MNNG and other simple alkylating agents with longer alkyl groups (ethyl, propyl, and butyl). The adaST-ogtST double mutant had a level of hypersensitivity to these agents similar to that of the ogtST single mutant. The ogtST and the adaST-ogtST mutants also displayed a two to three times higher spontaneous mutation frequency than the parent strain and the adaST mutant. These results indicate that the OgtST protein, but not the AdaST protein, plays a major role in protecting S. typhimurium from the mutagenic action of endogenous as well as exogenous alkylating agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号