首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our aim has been to elucidate the possible mechanism of CJX1, an amlodipine derivative, in the modulation of P-gp function by determining its effect on P-gp ATPase activity. Basal P-gp ATPase activity was increased by CJX1 with half-maximal activity concentration (Km) of 8.6 ± 1.4 μM. Kinetic analysis indicated a non-competitive inhibition of Verapamil (Ver)-stimulated P-gp ATPase activity by CJX1 and competitive inhibition of CJX1-stimulated P-gp ATPase activity by tetrandrine (Tet). The effect of CsA on CJX1-stimulated and Ver-stimulated P-gp ATPase activity was non-competitive and competitive inhibition, respectively. These findings implying that CJX1 and Tet can bind P-gp either on overlapping sites or distinct but interacting sites, while CJX1 and Ver as well as CsA can bind P-gp on separated sites in K562/DOX cells. Furthermore, the combined effect of CJX1 and Ver has been evaluated isobolographically in numerous fixed-ratio combinations of 1:1, 1:2, 1:4, 1:8, 1:10 in K562/DOX cells. The results show that mixtures of both drugs at these fixed-ratios exerted synergistic interactions, indicating that when the two reverses that bind P-gp on separated sites are combined, each can contribute to the overall interaction with P-gp, leading to the greater effect than that by either agent alone.  相似文献   

2.
Multidrug resistance (MDR) has emerged as the main problem in anti-cancer therapy. Although MDR involves complex factors and processes, the main pivot is the expression of multidrug efflux pumps. P-glycoprotein (P-gp) belongs to the family of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. It functions in cellular detoxification, pumping a wide range of xenobiotic compounds out of the cell. An attractive therapeutic strategy for overcoming MDR is to inhibit the transport function of P-gp and thus, increase intracellular concentration of drugs. Recently, various types of P-gp inhibitors have been found and used in experiments. However, none of them has passed clinical trials due to their high side-effects. Hence, the search for alternatives, such as plant-based P-gp inhibitors have gained attention recently. Therefore, we give an overview of the source, function, structure and mechanism of plant-based P-gp inhibitors and give more attention to cancer-related studies. These products could be the future potential drug candidates for further research as P-gp inhibitors.  相似文献   

3.
Schisandrin B--a novel inhibitor of P-glycoprotein   总被引:6,自引:0,他引:6  
P-glycoprotein-mediated drug efflux is one of the major causes of the cancer multidrug resistance (MDR). Inhibition of P-glycoprotein could reverse cancer MDR. Here, we show that schisandrin B, a naturally occurring compound from Schisandra chinensis (Turcz.) Baill, bears strong potency to inhibit P-glycoprotein. Schisandrin B reversed the drug resistance of four MDR cell lines characterized with overexpression of P-glycoprotein and fully restored the intracellular drug accumulation by interacting with P-glycoprotein. Schisandrin B has a core structure of dibenzocyclooctadiene, representing a novel P-glycoprotein inhibitor. To our best knowledge, the role of schisandrin B to inhibit P-glycoprotein has not been reported.  相似文献   

4.
Overexpression of the Multiple Drug Resistance gene (MDR1) has been proposed as a major mechanism related to both intrinsic and acquired resistance to chemotherapeutic agents. The gene product is a membrane protein (P-glycoprotein), that acts as an energydependent drug efflux pump decreasing drug accumulation in resistant tumor cells. We have characterized MDR1 and P-Glycoprotein expression in human gastric adenocarcinoma and in precursor lesions. MDR1 mRNAs, analyzed by dot-blot technique, were detected in 9 of 10 non-tumoral gastric mucosae and in 8 of 10 gastric adenocarcinomas. Immunohistochemical analysis, using the MRK16 monoclonal antibody, revealed heterogeneous expression of P-Glycoprotein in individual cells. The P-Glycoprotein was found on the surface of cells of gastric areas with intestinal metaplasia subtype III. This type of intestinal metaplasia, also called “colonic metaplasia”, has been strongly associated with a high risk for the development of gastric cancer. The fact that the P-Glycoprotein was detected in this precursor lesion is consistent with the intestinal metaplasia dysplasia and carcinoma sequence proposed in the histogenesis of this tumor. The finding that P-Glycoprotein was heterogeneously expressed in malignant cells of some gastric adenocarcinomas also suggests that this transporter system probably contributes to primary and secondary multidrug resistance in this neoplasm.  相似文献   

5.
The overexpression of the P-glycoprotein, theMDR1 gene product, has been linked to the development of resistance to multiple cytotoxic natural product anticancer drugs in certain cancers and cell lines derived from tumors. P-glycoprotein, a member of the ATP-binding cassette (ABC) superfamily of transporters, is believed to function as an ATP-dependent drug efflux pump with broad specificity for chemically unrelated hydrophobic compounds. We review here recent studies on the purification and reconstitution of P-glycoprotein to elucidate the mechanism of drug transport. P-glycoprotein from the human carcinoma multidrug resistant cell line, KB-V1, was purified by sequential chromatography on anion exchange followed by a lectin (wheat germ agglutinin) column. Proteoliposomes reconstituted with pure protein exhibited high levels of drug-stimulated ATPase activity as well as ATP-dependent [3H]vinblastine accumulation. Both the ATPase and vinblastine transport activities of the reconstituted P-glycoprotein were inhibited by vanadate. In addition, the vinblastine transport was inhibited by verapamil and daunorubicin. These studies provide strong evidence that the human P-glycoprotein functions as an ATP-dependent drug transporter. The development of the reconstitution system and the availability of recombinant protein in large amounts due to recent advances in overexpression of P-glycoprotein in a heterologous expression system should facilitate a better understanding of the function of this novel protein.  相似文献   

6.
The development of effective clinical interventions against multidrug resistance (MDR) in cancer remains a significant challenge. Single nucleotide polymorphisms (SNPs) contribute to wide variations in how individuals respond to medications and there are several SNPs in human P-glycoprotein (P-gp) that may influence the interactions of drug-substrates with the transporter. Interestingly, even some of the synonymous SNPs have functional consequences for P-gp. It is also becoming increasingly evident that an understanding of the transport pathway of P-gp may be necessary to design effective modulators. In this review we discuss: (1) The potential importance of SNPs (both synonymous and non-synonymous) in MDR and (2) How new concepts that have emerged from structural studies with isolated nucleotide binding domains of bacterial ABC transporters have prompted biochemical studies on P-gp, leading to a better understanding of the mechanism of P-gp mediated transport. Our results suggest that the power-stroke is provided only after formation of the pre-hydrolysis transition-like (E·S) state during ATP hydrolysis.  相似文献   

7.
A secA gene from Pseudomonas aeruginosa PAO1 was amplified and expressed in Escherichia coli BL21.19 (secA13) under conditions where E. coli SecA was depleted. The binding of P. aeruginosa SecA (PaSecA) to the SP-Sepharose column was facilitated by ammonium sulfate fractionation but was not necessary for E. coli SecA (EcSecA) as the later bound more efficiently. PaSecA and EcSecA were purified by the single chromatographic step to greater than 98% purity and had a recovery of more than 20 and 40%, respectively, from the soluble fraction. This simple step purification obtained a higher homogeneity than previously reported. Cross-reactivity by immunoblotting showed that the purified PaSecA contained little EcSecA if any. The purified PaSecA is a dimer in solution, as judged by size exclusion chromatography, and is slightly larger than its counterpart EcSecA with an estimated molecular weight of 240 kDa. Further studies by the sedimentation velocity method indicate that PaSecA tends to remain as a monomer in solution. The purified PaSecA possessed ATPase activity; the intrinsic and liposome-stimulated ATPase specific activities of PaSecA were approximately 50% of EcSecA.  相似文献   

8.
Behavior of P-glycoprotein (Pgp) natural lipid environment within the membrane of CEM cells expressing Pgp in the quantities varying from 0% to 32% of the total amount of all membrane proteins is described for the first time. Observed cooperative effect of Pgp-induced increase of membrane stability, decrease of the temperature of gel-to-crystal lipids transition and predominance of the lipid liquid crystalline phase at physiological temperatures should have an impact in development of multidrug resistance phenotype of tumor cells by favoring the Pgp intercellular transfer and Pgp ATPase activity.  相似文献   

9.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
《Phytomedicine》2014,21(11):1264-1272
ObjectiveMultidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.MethodsThe inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones.ResultsBi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity.ConclusionsTaken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.  相似文献   

11.
Multidrug resistance (MDR), which is a significant impediment to the success of cancer chemotherapy, is attributable to the overexpression of membrane transport proteins, such as P-glycoprotein (P-gp), resulting in an increased drug efflux. In this study, we show that the histone deacetylase (HDAC) inhibitor apicidin leads to resistance of HeLa cells to paclitaxel through the induction of P-gp expression. Furthermore, apicidin dramatically increases the release of a fluorescent P-gp substrate, rhodamine 123, from cells. In parallel, apicidin resistance to the apoptotic potential of paclitaxel is associated with induction of P-gp expression in HeLa cells, as evidenced by specific inhibition of P-gp function using either the pharmacological inhibitor verapamil or RNA silencing. We also demonstrate the contribution of apicidin-induced functional P-gp expression to drug resistance using KB cells. Failure of P-gp induction by apicidin does not reverse paclitaxel-induced cytotoxicity in the cells. Although HDAC inhibitors are widely appreciated as a new class of anti-tumor agent, our findings clearly demonstrate that apicidin treatment may lead to P-gp-mediated resistance to other anti-tumor agents, suggesting a need for careful design of clinical applications using HDAC inhibitors.  相似文献   

12.
Aiming to optimize macrocyclic lathyrane-type diterpenes as effective Pgp modulators, the phytochemical study of the methanolic extract of Euphorbia boetica aerial parts was carried out. Two new macrocyclic 6,17-epoxylathyrane-type diterpenes, named epoxyboetiranes A (1) and B (2), along with three known analogues (35) were isolated. Epoxyboetirane A (1), a triacetate isolated in large amounts, was hydrolyzed to give epoxylathyrol (6). In order to study the effect of the substitution pattern of the macrocyclic scaffold on MDR reversal, 6 was acylated with aroyl, phenylacetyl, cinnamoyl and alkanoyl chlorides/anhydrides, yielding eight new esters, epoxyboetiranes C–J (714). The ability of compounds 114 as P-glycoprotein (Pgp, ABCB1) modulators was evaluated through combination of transport and chemosensitivity assays, using L5178Y mouse T lymphoma cell line transfected with the human MDR1 gene. In the transport assay, excepting 1, 3 and 6, the compounds, at non-cytotoxic concentrations, displayed strong MDR reversing activity in a dose-dependent mode, exhibiting all the new acyl derivatives (714) a many fold increase in the activity when compared with 1. Apart from 11 and 12, all compounds exhibited remarkable synergistic effects in combination with doxorubicin. An ATPase assay, using membrane vesicles from mammalian cells overexpressing Pgp, was also performed with two representatives of the modulators (4 and 5). The results suggest that both compounds compete with substrates for the Pgp drug-binding sites.  相似文献   

13.
The MDR1 multidrug resistance gene encodes a high molecular weight membrane-spanning cell surface protein, P-glycoprotein, that confers multidrug resistance by pumping various cytotoxic drugs, including vinblastine, doxorubicin or paclitaxel, out of cells. Overexpression of P-glycoprotein in human tumors has been recognized as a major obstacle for successful chemotherapy of cancer. Thus, P-glycoprotein represents an important drug target for pharmacological chemosensitizers. Initially, cell culture models to study the multidrug resistance phenotype were established by selecting drug-sensitive cells in step-wise increasing, sublethal concentrations of chemotherapy agents. P-glycoprotein was found to be overexpressed in many of these models. Multidrug resistant cells can also be generated by transfection of cultured cells with the MDR1 gene, followed by selection with cytotoxic drug at a concentration that kills all untransfected host cells. Transfectants expressing wild-type or mutant recombinant P-glycoprotein have significantly contributed to our understanding of the structure of P-glycoprotein and its molecular and cellular functions. Additionally, the MDR1 gene has also been used as a selectable marker for the transfer and coexpression of non-selectable genes. This article details means for detection of P-glycoprotein in DNA-transfected or retrovirally transduced, cultured cells. Different experimental approaches are described that make use of specific antibodies for detection of P-glycoprotein. Strategies to visualize P-glycoprotein include metabolic labeling using 35S-methionine, labeling with a radioactive photoaffinity analog, and non-radioactive immunostaining after Western blotting.  相似文献   

14.
The overexpression of P-glycoprotein plays an important role in the process of multidrug resistance (MDR). P-gp inhibitors are one of the effective strategies to reverse tumor MDR. Novel P-gp inhibitors with phthalazinone scaffolds were designed, synthesized and evaluated. Compound 26 was found to be the most promising for further study. Compound 26 possessed high potency (EC50 = 46.2 ± 3.5 nM) and low cytotoxicity.26 possessed high MDR reversal activity towards doxorubicin-resistant K56/A02 cells. Reversal fold (RF) value reach to 44.26. 26 also increased accumulation of doxorubicin (DOX or ADM) or other MDR-related anticancer drugs with different structures. In conclusion, compound 26 deserves more research for its good features as P-gp inhibitor.  相似文献   

15.
Conflicts with the notion that specific substrate interactions were required in the control of reaction path in active transport systems, P-glycoprotein showed extraordinarily low specificity. Therefore, overexpression P-glycoprotein excluded a large number of anticancer agents from cancer cells, and multidrug resistance happened. Several kinds of bisbenzylisoqunoline alkaloids were reported to modulate P-glycoprotein function and reverse drug resistance. In order to provide more information for their structure activity relationship on P-glycoprotein function, the effects of tetrandrine, isotetrandrine, fangchinoline, berbamine, dauricine, cepharanthine and armepavine on the P-glycoprotein function were compared by using daunorubicin-resistant leukemia MOLT-4 cells in the present study. Among them, tetrandrine exhibited the strongest P-glycoprotein inhibitory effect, followed with fangchinoline and cepharanthine, and subsequently with berbamine or isotetrandrine. However, dauricine and armepavine showed little influence on the P-glycoprotein function. These data revealed that the 18-membered ring of the bisbenzylisoquinoline alkaloids maintained the P-glycoprotein inhibitory activity, suggesting that double isoquinoline units connected by two oxygen bridges were indispensable. Moreover, stereo-configuration of bisbenzylisoquinoline 3D structures determined their inhibitory activities, which provided a new viewpoint to recognize the specificity of binding pocket in P-glycoprotein. Our data also indicated that 3D chemical structure was more sensitive than 2D to predict the P-glycoprotein inhibitory-potencies of bisbenzylisoqunoline alkaloids.  相似文献   

16.
The effects of dietary phytochemicals on P-glycoprotein function were investigated using human multidrug-resistant carcinoma KB-C2 cells and the fluorescent P-glycoprotein substrates daunorubicin and rhodamine 123. The effects of natural chemopreventive compounds, capsaicin found in chilli peppers, curcumin in turmeric, [6]-gingerol in ginger, resveratrol in grapes, sulforaphane in broccoli, 6-methylsulfinyl hexyl isothiocyanate (6-HITC) in Japanese horseradish wasabi, indole-3-carbinol (I3C) in cabbage, and diallyl sulfide and diallyl trisulfide in garlic, were examined. The accumulation of daunorubicin in KB-C2 cells increased in the presence of capsaicin, curcumin, [6]-gingerol, and resveratrol in a concentration-dependent manner. The accumulation of rhodamine 123 in KB-C2 cells was also increased, and the efflux of rhodamine 123 from KB-C2 cells was decreased by these phytochemicals. Sulforaphane, 6-HITC, I3C, and diallyl sulfide and diallyl trisulfide had no effect. These results suggest that dietary phytochemicals, such as capsaicin, curcumin, [6]-gingerol, and resveratrol, have inhibitory effects on P-glycoprotein and potencies to cause drug-food interactions.  相似文献   

17.
The human multidrug resistance protein, or P-glycoprotein (Pgp), exhibits a high-capacity drug-dependent ATP hydrolytic activity that is a direct reflection of its drug transport capability. This activity is readily measured in membranes isolated from cultured insect cells infected with a baculovirus carrying the humanmdrl cDNA. The drug-stimulated ATPase activity is a useful alternative to conventional screening systems for identifying high-affinity drug substrates of the Pgp with potential clinical value as chemosensitizers for tumor cells that have become drug resistant. Using this assay system, a variety of drugs have been directly shown to interact with the Pgp. Many of the drugs stimulate the Pgp ATPase activity, but certain drugs bind tightly to the drug-binding site of the Pgp without eliciting ATP hydrolysis. Either class of drugs may be useful as chemosensitizing agents. The baculovirus/insect cell Pgp ATPase assay system may also facilitate future studies of the molecular structure and mechanism of the Pgp.  相似文献   

18.
Overexpression of the 170 kDa plasma membrane P-glycoprotein (P-gp) represents the most common MDR mechanism in chemotherapy. In this work, specific autoantibodies to fragments from extracellular loops 1, 2, and 4 of the murine MDR1 P-gp were elicited in mice using synthetic palmitoylated peptides reconstituted in liposomes and alum. The highest IgG level was observed after the third immunization and the immune response against lipopeptides was still detected more than 200 days after immunizations. Immunocytochemichal studies revealed that these antibodies were specific for P-gp. When incubated with P-gp-expressing MDR cell lines, serum from immunized mice restored sensitivity to either doxorubicin or vinblastine, or had no effect in a cell type specific manner, suggesting that several mechanisms may occur in the establishment of the MDR phenotype. The expression of mdr1 and mdr3 genes was unchanged in organs from mice immunized with palmitoylpeptides grafted on liposomes. These results suggest that the induction of autoantibodies to P-gp is a safe strategy to overcome MDR in cancer chemotherapy.  相似文献   

19.
《FEBS letters》1993,330(3):279-282
Human MDR1 cDNA was introduced into the human cultured cells KB-3-1 and Schizosaccharomyces pombe pmdI null mutant KN3. The drug sensitivity of KB-G2 and KN3/pgp, expressing human P-glycoprotein, was examined. KB-G2 was resistant to the peptide antibiotics valinomycin and gramicidin D as well as having a typical multidrug resistance (MDR) phenotype. KN3/pgp was resistant to valinomycin and actinomycin D, but not to adriamycin. The ATP-hydrolysis-deficient mutant did not confer KN3 resistance to these antibiotics. Human P-glycoprotein expressed in S. pombe seemed to lack N-glycosylation. The N-glycosylation-deficient mutant, however, conferred a typical MDR phenotype on KB-3-1. These results suggest that human P-glycoprotein functions as an efflux pump of valinomycin and actinomycin D in the membrane of S. pombe.  相似文献   

20.
Chemotherapy, though it remains one of the front-line weapons used to treat human cancer, is often ineffective due to drug resistance mechanisms manifest in tumor cells. One common pattern of drug resistance, characterized by simultaneous resistance to multiple amphipathic, but otherwise structurally dissimilar anticancer drugs, is termed multidrug resistance. Multidrug resistance in various model systems, covering the phylogenetic range from bacteria to man, can be conferred by mammalian P-glycoproteins (PGPs), often termed multidrug transporters. PGPs are 170-kD polytopic membrane proteins, predicted to consist of two homologous halves, each with six membrane spanning regions and one ATP binding site. They are members of the ATP-binding cassette (ABC) superfamily of transporters, and are known to function biochemically as energy-dependent drug efflux pumps. However, much remains to be learned about PGP structure-function relationships, membrane topology, posttranslational regulation, and bioenergetics of drug transport. Much of the recent progress in the study of the human and mouse PGPs has come from heterologous expression systems which offer the benefits of ease of genetic selection and manipulation, and/or short generation times of the organism in which PGPs are expressed, and/or high-level expression of recombinant PGP. Here we review recent studies of PGP inE. coli, baculovirus, and yeast systems and evaluate their utility for the study of PGPs, as well as other higher eukaryotic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号