首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A peptidyl transferase ribozyme capable of combinatorial peptide synthesis   总被引:2,自引:0,他引:2  
The formation of peptide bonds is a key step in both the chemical and biological synthesis of peptides. The ribozyme can use a wide range of amino acids as its substrate for the dipeptide synthesis. A library containing 29 peptides whose synthesis was catalyzed by this unique ribozyme was analyzed by mass spectrometry. These results implicate that ribozyme may have potential application in the peptide synthesis.  相似文献   

2.
RNA can function both as an informational molecule and as a catalyst in living organisms. This duality is the premise of the RNA world hypothesis. However, one flaw in the hypothesis that RNA was the most essential molecule in primitive life is that no RNA self-replicating system has been found in nature. To verify whether RNA has the potential for self-replication, we constructed a new RNA self-assembling ribozyme that could have conducted an evolvable RNA self-replication reaction. The artificially designed, in vitro selected ligase ribozyme was employed as a prototype for a self-assembling ribozyme. The ribozyme is composed of two RNA fragments (form R1·Z1) that recognize another R1·Z1 molecule as their substrate and perform the high turnover ligation reaction via two RNA tertiary interaction motifs. Furthermore, the substrate recognition of R1·Z1 is tolerant of mutations, generating diversity in the corresponding RNA self-replicating network. Thus, we propose that our system implies the significance of RNA tertiary motifs in the early RNA molecular evolution of the RNA world.  相似文献   

3.
Ma W  Yu C  Zhang W  Hu J 《RNA (New York, N.Y.)》2007,13(11):2012-2019
Though the "RNA world" hypothesis has gained a central role in ideas concerning the origin of life, the scenario concerning its emergence remains uncertain. It has been speculated that the first scene may have been the emergence of a template-dependent RNA synthetase ribozyme, which catalyzed its own replication: thus, "RNA replicase." However, the speculation remains uncertain, primarily because of the large sequence length requirement of such a replicase and the lack of a convincing mechanism to ensure its self-favoring features. Instead, we propose a nucleotide synthetase ribozyme as an alternative candidate, especially considering recent experimental evidence suggesting the possibility of effective nonenzymatic template-directed synthesis of RNA. A computer simulation was conducted to support our proposal. The conditions for the emergence of the nucleotide synthetase ribozyme are discussed, based on dynamic analysis on a computer. We suggest the template-dependent RNA synthetase ribozyme emerged later, perhaps after the emergence of protocells.  相似文献   

4.
The hairpin ribozyme is a small self-cleaving RNA that can be engineered for RNA cleavage in trans and has potential as a therapeutic agent. We have used a chemical synthesis approach to study the requirements of hairpin RNA cleavage for sugar and base moieties in residues of internal loop B, an essential region in one of the two ribozyme domains. Individual nucleosides were substituted by either a 2'-deoxy-nucleoside, an abasic residue, or a C3-spacer (propyl linker) and the abilities of the modified ribozymes to cleave an RNA substrate were studied in comparison with the wild-type ribozyme. From these results, together with previous studies, we propose a new model for the potential secondary structure of internal loop B of the hairpin ribozyme.  相似文献   

5.
Sun L  Cui Z  Li C  Huang S  Zhang B 《Biochemistry》2007,46(12):3714-3723
Previously we have identified a highly active ribozyme (R180, cis ribozyme) that can catalyze dipeptide synthesis using N-biotinylcaproyl-aminoacyl-adenylate anhydride (Bio-aa-5'-AMP) as its substrate. In this work, we re-engineered the cis R180 ribozyme into a 158-nt trans ribozyme (TR158) and designed a new substrate (5'-Phe-linker-20-mer). First, the metal ion requirements were examined and compared between the two ribozymes. Both R180 and TR158 ribozymes were active in Mg2+ and Ca2+ but inert with Zn2+, Cu2+, Mn2+, and Co2+. It is intriguing that both ribozymes were highly active in Li+, Na+, or K+ alone but showed very low activity with NH4+. The two ribozymes showed similar linear concentration dependence on Li+ and K+, while they displayed different dependency behavior on Mg2+. Moreover, by using the trans system, the detailed kinetic studies and pH dependent experiments were performed in either 10 mM Mg2+ or 1.0 M Li+. Analysis of kcat and Km values obtained at different pHs (6.0 to 9.0) indicated that it is the catalytic activity of the ribozyme but not the substrate binding affinity that changes significantly with pH. The slopes of the linear parts of the pH-rate plots were close to 1.0 in both Mg2+- and Li+-mediated reactions, suggesting that one proton transfer is involved in the rate-limiting step of catalysis. Overall, our results suggest that Mg2+ and Li+ function similarly in the ribozyme-catalyzed dipeptide synthesis.  相似文献   

6.
A cytoplasmic ribozyme expression system, based on codelivery of a ribozyme vector, a T7 autogene vector, and T7 RNA polymerase (RNAP), has been developed and used to generate a specific phenotype in zebrafish by targeting a no tail (ntl) mRNA. The expression of the no tail ribozyme sequence is under the control of a tandem of two promoters: The T7 promoter and an adenoviral va 1 (pol III) promoter. The coinjection of the ribozyme vector pT7vaRz, the T7 autogene vector pT7T7, and the T7 RNAP resulted in rapid synthesis of the ribozyme against the ntl mRNA in the cytoplasm of the injected zebrafish embryos, generating no tail phenotypes in up to 10-20% of the injected embryos. The phenotypic change rates have been found to be related to the concentrations of the plasmid vectors and T7 RNAP injected and to the ratios of the three injected components. This cytoplasmic ribozyme expression system may be useful for efficiently targeting other mRNA and for various biomedical applications. These potential applications may include rapid identification of biological functions of novel genes from zebrafish and humans based on partial gene sequence information and gene therapy of genetic and acquired diseases.  相似文献   

7.
The hairpin ribozyme is an example of a small catalytic RNA that catalyses the endonucleolytic transesterification of RNA in a highly sequence-specific manner. We have utilised chemical synthesis of RNA to create mutants of the hairpin ribozyme in which a nucleoside analogue replaces one of the essential pyrimidines in the ribozyme. Individual pyrimidine nucleosides were substituted by 4-thiouridine, O4-methyluridine, O2-methyluridine or 2-pyrimidinone-1-beta-d-riboside. To facilitate the synthesis of oligoribonucleotides containing 4-thiouridine, we have devised a new synthetic route to the key intermediate 5'-O-(4, 4'-dimethoxytrityl)-2'-O-tert-butyldimethylsilyl-S-cyanoethyl-4-thiou ridine. The ability of the modified ribozymes to support catalysis was studied and the steady-state kinetic parameters were determined for each mutant. The range of analogues used in this study allows the important functional groups of the essential pyrimidines to be identified. The results demonstrate that each pyrimidine (U41, U42 and C25) plays an important role in hairpin ribozyme catalysis. The findings are discussed in terms of the various models that have been proposed for loop B of the hairpin ribozyme.  相似文献   

8.
RNA molecules that are assembled from the four standard nucleotides contain a limited number of chemical functional groups, a characteristic that is generally thought to restrict the potential for catalysis by ribozymes. Although polypeptides carry a wider range of functional groups, many contemporary protein-based enzymes employ coenzymes to augment their capabilities. The coenzymes possess additional chemical moieties that can participate directly in catalysis and thereby enhance catalytic function. In this work, we demonstrate a mechanism by which ribozymes can supplement their limited repertoire of functional groups through RNA-catalyzed incorporation of various coenzymes and coenzyme analogues. The group I ribozyme of Tetrahymena thermophila normally mediates a phosphoester transfer reaction that results in the covalent attachment of guanosine to the ribozyme. Here, a shortened version of the ribozyme is shown to catalyze the self-incorporation of coenzymes and coenzyme analogues, such as NAD+ and dephosphorylated CoA-SH. Similar ribozyme activities may have played an important role in the RNA world, when RNA enzymes are thought to have maintained a complex metabolism in the absence of proteins and would have benefited from the inclusion of additional functional groups.Correspondence to: G.F. Joyce  相似文献   

9.
Several 2'-modified ribonucleoside phosphoramidites have been prepared for structure-activity studies of the hammerhead ribozyme. The aim of these studies was to design and synthesize catalytically active and nuclease-resistant ribozymes. Synthetic schemes for stereoselective synthesis of the R isomer of 2'-deoxy-2'-C-allyl uridine and cytidine phosphoramidites, based on the Keck allylation procedure, were developed. Protection of the 2'-amino group in 2'-deoxy-2'-aminouridine was optimized and a method for the convenient preparation of 5'-O-dimethoxytrityl-2'-deoxy-2'-phthalimidouridine 3'-O-(2-cyanoethyl-N,N-diisopropylphosphoramidite) was developed. During the attempted preparation of the 2'-O-t-butyldimethylsilyl-3'-O-phosphoramidite of arabinouridine a reversed regioselectivity in the silylation reaction, compared with the published procedure, was observed, as well as the unexpected formation of the 2,2'-anhydronucleoside. A possible mechanism for this cyclization is proposed. The synthesis of 2'-deoxy-2'-methylene and 2'-deoxy-2'-difluoromethylene uridine phosphoramidites is described. Based on a '5-ribose' model for essential 2'-hydroxyls in the hammerhead ribozyme these 2'-modified monomers were incorporated at positions U4 and/or U7 of the catalytic core. A number of these ribozymes had almost wild-type catalytic activity and improved stability in human serum, compared with an all-RNA molecule.  相似文献   

10.
Over the past two decades, RNA catalysis has become a major topic of research. On the one hand, naturally occurring ribozymes have been extensively investigated concerning their structure and functional mechanisms. On the other hand, the knowledge gained from these studies has been used to engineer ribozyme variants with novel properties. In addition to RNA engineering by means of rational design, powerful techniques for selection of ribozymes from large pools of random sequences were developed and have been widely used for the generation of functional nucleic acids. RNA as catalyst has been accompanied by DNA, and nowadays a large number of ribozymes and deoxyribozymes are available. The field of ribozyme generation and selection has been extensively reviewed. With respect to the field of biotechnology, RNA and DNA catalysts working on peptides or proteins, or which are designed to control protein synthesis, are of utmost importance and interest. Therefore, in this review, we will focus on engineered nucleic acid catalysts for peptide synthesis and modification as well as for intracellular control of gene expression.  相似文献   

11.
Because of the ability to cleave RNA substrates in trans, the hairpin ribozyme has great potential for therapeutic application. Activity of a three-stranded version of the minimal truncated form is enhanced by the presence of the polyamine spermine. Since spermine is the most abundant polyamine in eucariots, improved prospects for the hairpin ribozyme as therapeutic agent were predicted. We have found that not all hairpin ribozyme variants accept spermine equally well as counter-ion. Particularly the two-stranded versions commonly used for therapeutic studies show rather decreased activity when spermine is present. We have investigated a number of hairpin ribozyme derivatives regarding their ability to carry out spermine supported catalysis. Among the studied structures a two-stranded reverse-joined hairpin ribozyme displayed the highest cleavage rates in a synergistic mixture of magnesium ions and spermine. The specific features of this ribozyme along with its potential for in vivo application are discussed.  相似文献   

12.
Transforming growth factor-beta (TGF-beta) has been reported to be involved in the pathogenesis of cardiovascular proliferative diseases such as hypertensive vascular disease, atherosclerosis, and arterial restenosis after angioplasty. We designed a 38-base DNA-RNA chimeric hammerhead ribozyme to cleave human TGF-beta1 mRNA as a gene therapy for human arterial proliferative diseases. In the presence of MgCl(2), synthetic ribozyme to human TGF-beta1 mRNA cleaved the synthetic target RNA into two RNA fragments of predicted size. A control mismatch ribozyme, with one different base in the catalytic loop region, was inactive. DNA-RNA chimeric ribozyme (0. 01-1.0 microM) significantly inhibited angiotensin II (Ang II)-stimulated DNA synthesis in a dose-dependent manner in human vascular smooth muscle cells (VSMC). The mismatch ribozyme did not affect Ang II-stimulated DNA synthesis in the cells. DNA-RNA chimeric ribozyme (1.0 microM) inhibited the proliferation of human VSMC in the presence of Ang II. DNA-RNA chimeric ribozyme (1.0 microM) significantly inhibited Ang II-stimulated TGF-beta1 mRNA and protein expression in human VSMC. These results indicate that the designed DNA-RNA chimeric hammerhead ribozyme targeted to human TGF-beta1 mRNA can effectively and potentially inhibit growth of human VSMC by cleaving the TGF-beta1 mRNA. This finding suggests that this ribozyme will be useful in the gene therapy of arterial proliferative diseases.  相似文献   

13.
The uptake and cellular metabolism of a fluorescein-labelled synthetic ribozyme stabilized by 2'- O -methyl modification and a 3' inverted thymidine have been studied, employing capillary gel electrophoresis as a novel and efficient analytical method. After internalization by DOTAP transfection, electrophoretic peaks of intact ribozyme and different degradation products were easily resolved and the amount of intracellular intact ribozyme was quantified to >10(7) molecules/cell at the peak value after 4 h transfection. On further incubation the amount of intracellular intact ribozyme decreased due to both degradation and efflux from the cell. However, even after 48 h incubation there were still >10(6) intact ribozyme molecules/cell. Clear differences both in uptake and in metabolism were seen when comparing DOTAP transfection with the uptake of free ribozyme. Fluorescence microscopy studies indicated that the ribozyme was mainly localized in intracellular granules, probably not accessible to target mRNA. This implies that agents able to release the intact ribozyme from intracellular vesicles into the cytosol should have a considerable potential for increasing the biological effects of synthetic ribozymes.  相似文献   

14.
bcl-2核酶(Ribozyme)促进紫杉醇诱导的细胞凋亡   总被引:4,自引:0,他引:4  
用核酶技术阻断或降低抗凋亡蛋白 Bcl- 2的表达以促进化疗药物紫杉醇诱导的食管癌细胞凋亡 ,探索克服耐药、提高紫杉醇疗效的新途径 .将特异性切割 Bcl- 2 m RNA的核酶克隆至含MTII启动子并可为 Zn SO4 诱导表达的真核表达载体中 ,通过脂质体转入食管癌鳞状上皮细胞系Eca 1 0 9中 ,经 G41 8筛选得到稳定抗性细胞株 X1 0 9R,挑取单细胞株扩大培养 ,1 40μmol/L Zn SO4诱导 3d,用 Northern- blot、免疫荧光、流式细胞仪鉴定核酶及 Bcl- 2蛋白表达情况 ,用 TUNEL标记及流式细胞术检测凋亡细胞的比例 .bcl- 2核酶在不同单细胞株中有不同程度的表达 ,其中一株X1 0 9R1 4表达最高 .测定其中 Bcl- 2蛋白含量 ,发现 Bcl- 2蛋白表达大为降低 .加入紫杉醇后 ,TUNEL标记及凋亡峰测定结果都表明同一条件下凋亡率升高 .结果提示 ,转入特异性切割 bcl- 2m RNA的核酶可有效地阻断 Bcl- 2蛋白合成 .Bcl- 2蛋白表达降低可明显促进紫杉醇诱导的细胞凋亡 .说明 Bcl- 2蛋白在细胞产生耐药过程中起着重要作用  相似文献   

15.
Abstract

Four fluoro modified universal nucleobases have been synthesized. The universal nucleobases 1 and 2 , containing a 2,4-difluorobenzene as nucleobase and a 4,6-difluorobenzimidazole, respectively, were chemically incorporated into a selected hammerhead ribozyme sequence which has already been retrovirally expressed as an anti-HIV ribozyme to investigate their effect on the catalytic activity of the ribozymes. The substitution of the natural nucleosides with either 1 or 2 results only in a small decrease of the catalytic activity. The Km value for the monosubstituted ribozyme with a 2,4-difluorobenzene is 309 nM?1, the corresponding kcat is 2.91 · 10?3 min?1. A disubstituted hammerhead ribozyme carrying one of each modification has also been synthesized. For a further stabilization of the ribozyme/substrate complex 2′-(β-aminoethoxy) modified fluorinated nucleosides 15 and 16 have been developed.  相似文献   

16.
17.
Several modified nucleosides were introduced during in vitro RNA synthesis into a pre-tRNA(Ser). The pre-tRNAs were used as substrates for RNase P enzymes. No effects were observed with biotin-8-ATP or [alpha-S]-GPT, whereas with m7GTP, the cleavage reaction was completely inhibited. Analysis of pre-tRNAs which contained m7G at various positions has revealed a single base at the 5'-end of the acceptor stem where this modification absolutely prevents cleavage by catalytic M1 RNA, eukaryotic and prokaryotic RNase P holoenzymes. These results suggest that a critical contact must be made between pre-tRNA substrate and enzyme/ribozyme or that the approach of the potential cleaving agent (a positive magnesium ion) is made impossible by the positive charge at N-7 of the guanosine. In addition, we have shown that a pre-tRNA containing only m7G's can still form a complex with M1 RNA in a gel retardation assay.  相似文献   

18.
Li YL  Torchet C  Vergne J  Maurel MC 《Biochimie》2007,89(10):1257-1263
Ribozymes are catalytic RNAs that possess the property of cutting an RNA target via site-specific cleavage after sequence-specific recognition. Ribozymes can moreover cleave multiple substrate molecules. An increasing number of studies show that ribozymes are particularly well adapted tools against cancer, silencing or down-regulating gene expression at the RNA level. We have constructed an adenine-dependent hairpin ribozyme that cleaves the sequence at nucleotides A(225)(downward arrow)G(226) relative to the start codon of translation of the Tpl-2 kinase mRNA; this serine/threonine kinase activates the mitogen-activated protein kinase pathway implicated in cell proliferation in breast cancer. An adenine-dependent hairpin ribozyme 1 (ADHR1) was previously isolated using the Systematic Evolution of Ligands by EXponential enrichment procedure. Switch on/switch off ribozymes are particularly useful since high amounts of stable ribozyme can be produced in the absence of adenine and the ribozyme specifically cleaves its target in the presence of adenine. The ADHR1 target sequence was replaced by a sequence derived from the Tpl-2 kinase mRNA. The resulting Tpl-2 ribozyme is active in cis cleavage: kinetic studies have been performed as a function of Mg2+ concentration, adenine concentration, as well as at different pH and with various cofactors. Finally, the Tpl-2 ribozyme was shown to cleave its target in trans successfully. These findings demonstrate that a potential therapeutic ribozyme can be produced by simple sequence modification.  相似文献   

19.
We previously isolated from random sequences ribozymes able to form a glycosidic linkage between a ribose sugar and 4-thiouracil in a reaction that mimics protein-catalyzed nucleotide synthesis. Here we report on two serial in vitro selection experiments that defined the core motif of one of the nucleotide synthase ribozymes and provided improved versions of this ribozyme. The first selection experiment started from a degenerate sequence pool based on the previously isolated sequence and used a selection-amplification protocol that allowed the sequence requirements at the 3' terminus of the ribozyme to be interrogated. Comparing the active sequences identified in this experiment revealed the complicated secondary structure of the nucleotide synthase ribozyme. A second selection was then performed to remove nonessential sequence from the ribozyme. This selection started with a pool with variation introduced in both the sequence and the length of the nonconserved loops and joining regions. This pool was generated using a partial reblocking/deblocking strategy on a DNA synthesizer, allowing the combinatorial synthesis of both point deletions and point substitutions. The consensus ribozyme motif that emerged was an approximately 71 nt pseudoknot structure with five stems and two important joining segments. Comparative sequence analysis and a cross-linking experiment point to the probable location of nucleotide synthesis. The prototype isolate from the second selection was nearly 35 times more efficient than the initial isolate and at least 10(8) times more efficient than an upper limit of an as-yet undetectable uncatalyzed reaction, supporting the idea that RNA-catalyzed nucleotide synthesis might have been important in an RNA world.  相似文献   

20.
Ribozymes in the age of molecular therapeutics   总被引:4,自引:0,他引:4  
Ribozymes are RNA molecules capable of sequence-specific cleavage of other RNA molecules. Since the discovery of the first group I intron ribozyme in 1982, new classes of ribozymes, each with their own unique reaction, target site specifications, and potential applications, have been identified. These include hammerhead, hairpin, hepatitis delta, varkud satellite, groups I and II intron, and RNase P ribozymes, as well as the ribosome and spliceosome. Meanwhile, ribozyme engineering has enabled the in vitro selection of synthetic ribozymes with unique properties. This, along with advances in ribozyme delivery methods and expression systems, has led to an explosion in the potential therapeutic applications of ribozymes, whether for anti-cancer or anti-viral therapy, or for gene repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号