首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
1-Cys peroxiredoxin (1-cysPrx) is a novel antioxidant enzyme that has been shown to reduce a broad spectrum of peroxides including phospholipid hydroperoxides. We tested the hypothesis that adenovirus-mediated transfer of the 1-cysPrx gene can protect lungs of mice from oxidant injury. Mice infected with AdLacZ/AdNull were used as a control (AdCon). X-galactosidase staining revealed widespread expression of the LacZ gene in airways and lung alveoli. Compared with AdCon, 1-cysPrx expression was increased about twofold at 3 days after adenovirus infection. Mice with increased Prx expression showed less loss of body weight and longer survival during exposure to 100% O(2) or to 85% O(2) for 4 days followed by 100% O(2). At 72 h of 100% O(2) exposure, AdPrx infection protected mouse lungs from injury as indicated by less pleural effusion, lower lung wet/dry weight, less protein and fewer nucleated cells in bronchoalveolar lavage fluid, and lower content of thiobarbituric acid-reactive substances and protein carbonyls in lung homogenate. These findings show that increased expression of 1-cysPrx through adenovirus-mediated gene transfer protects mouse lungs from hyperoxic injury and delays death.  相似文献   

4.
1-cys peroxiredoxin (1-cysPrx), a member of the peroxiredoxin superfamily, reduces phospholipid hydroperoxides as well as organic peroxides and H(2)O(2). To determine the physiological function(s) of 1-cysPrx, we have used an antisense strategy to suppress endogenous 1-cysPrx in L2 cells, a rat lung epithelial cell line. A 25-base antisense morpholino oligonucleotide was designed to bind a complementary sequence overlapping the translational start site (-18 to +7) in the rat 1-cysPrx mRNA, blocking protein synthesis. Treatment with an antisense oligonucleotide for 48 h resulted in approximately 60% suppression of the 1-cysPrx protein content as measured by immunoblot analysis and an approximately 44% decrease of glutathione peroxidase activity as compared with random oligonucleotide treated and control (vehicle only) cells. Accumulation of phosphatidylcholine hydroperoxide in plasma membranes was demonstrated by high pressure liquid chromatography assay for conjugated dienes (260 pmol/10(6) cells for antisense versus 70 pmol/10(6) cells for random oligonucleotide and control cells) and by fluorescence of diphenyl-1-pyrenylphosphine, a probe for lipid peroxidation. The percentage of cells showing positive staining for annexin V and propidium iodide after antisense treatment was 40% at 28 h and 80% at 48 h. TdT-mediated dUTP nick end labeling assay at 48 h indicated DNA fragmentation in antisense-treated cells that was blocked by prior infection with adenovirus encoding 1-cysPrx or by pretreatment with a vitamin E analogue. The results indicate that 1-cysPrx can function in the intact cell as an antioxidant enzyme to reduce the accumulation of phospholipid hydroperoxides and prevent apoptotic cell death.  相似文献   

5.
采用RNAi技术抑制PeroxiredoxinⅠ的表达   总被引:2,自引:0,他引:2  
Peroxiredoxin(Prx)属于抗氧化蛋白超家族,广泛存在于原核生物和真核生物中[1,2].哺乳动物的Prx蛋白家族包括6个成员,PrxⅠ—Ⅵ.PrxⅠ定位于细胞质中,在多种组织中表达.它还是一个可诱导的蛋白,在氧化应急条件下其表达显著增高,并高表达于一些恶性肿瘤细胞中[3~5].该蛋白的生化  相似文献   

6.
Antrodia camphorata is a unique medicinal mushroom found only in Taiwan. It has been used as a remedy for various diseases in folk medicine. Antrodia camphorata has been shown to exhibit antioxidative effects. Peroxiredoxins play important roles in antioxidation and cell signaling. A gene encoding an antioxidant enzyme, 1-cysteine peroxiredoxin (1-Cys Prx), was identified in an expressed sequence tag database of the A. camphorata and cloned by polymerase chain reaction. The 1-Cys Prx cDNA (837 bp, accession no. AY870325) contains an open reading frame encoding a protein of 223 amino acid residues with calculated molecular mass of 25,081 Da. The deduced protein shared 44–58% identity with 1-Cys Prx from Homo sapiens, Bos taurus, and Saccharomyces cerevisia. The sequence surrounding the conserved cysteine DFTPVCTTE is conserved. The coding sequence was subcloned into a vector, pET-20b (+), and transformed into Escherichia coli. The recombinant 1-Cys Prx was purified by Ni2+-nitrilotriacetic acid (Sepharose). The purified enzyme was characterized under various conditions. The enzyme is thermostable because its half-life of inactivation was 15.5 min at 60°C. It was stable under alkaline pH range from 7.8 to 10.2. The enzyme showed decreased activity with increasing concentration of imidazole. The enzyme is sensitive to trypsin and chymotrypsin treatment. Lisa Wen, Hui-Ming Huang, and Rong-Huay Juang contributed equally to this paper.  相似文献   

7.
Glutathione S-transferase pi has been shown to reactivate 1-cysteine peroxiredoxin (1-Cys Prx) by formation of a complex [L.A. Ralat, Y. Manevich, A.B. Fisher, R.F. Colman, Biochemistry 45 (2006) 360-372]. A model of the complex was proposed based on the crystal structures of the two enzymes. We have now characterized the complex of GST pi/1-Cys Prx by determining the Mw of the complex, by measuring the catalytic activity of the GST pi monomer, and by identifying the interaction sites between GST pi and 1-Cys Prx. The Mw of the purified GST pi/1-Cys Prx complex is 50,200 at pH 8.0 in the presence of 2.5 mM glutathione, as measured by light scattering, providing direct evidence that the active complex is a heterodimer composed of equimolar amounts of the two proteins. In the presence of 4 M KBr, GST pi is dissociated to monomer and retains catalytic activity, but the Km value for GSH is increased substantially. To identify the peptides of GST pi that interact with 1-Cys Prx, GST pi was digested with V8 protease and the peptides were purified. The binding by 1-Cys Prx of each of four pure GST pi peptides (residues 41-85, 115-124, 131-163, and 164-197) was investigated by protein fluorescence titration. An apparent stoichiometry of 1 mol/subunit 1-Cys Prx was measured for each peptide and the formation of the heterodimer is decreased when these peptides are included in the incubation mixture. These results support our proposed model of the heterodimer.  相似文献   

8.
Ryu MJ  Lee C  Kim J  Shin HS  Yu MH 《Journal of neurochemistry》2008,104(5):1260-1270
The stargazer ( stg ) mutant mouse, having mutation in stargazin, the calcium channel γ2 subunit, exhibited several neurological disorders including spontaneous absence seizure, cerebellar ataxia, and head tossing. To understand the molecular pathogenic mechanism of the absence seizure resulted from the loss of stargazin function, the thalamic proteomes between control mouse and stg mouse were compared. We identified 12 proteins expressed differentially (> 1.6-fold) by fluorescence two-dimensional difference gel electrophoresis and tandem mass spectrometry. Six of them are involved in basic metabolism including energy metabolism, three in stress response, two in axonal growth regulation, and one in the endoplasmic reticulum processing. All except mortalin showed decreased level of expression in stg mouse. Two stress-related proteins, mouse stress induced phosphoprotein 1 and peroxiredoxin 6 exhibited reduced levels of expression in stg mouse, while the level of another stress protein, mortalin was increased. Analysis of oxidative protein carbonylation in thalamic proteome of stg mouse showed higher level of carbonylated proteins in stg mouse than in control mouse. Interestingly, down-regulation of stress protein mouse stress induced phosphoprotein 1, metabolic enzyme isovaleryl-CoA dehydrogenase, and the two in neuronal axon growth, collapsin response mediator protein 2 and fascin homolog 1 coincides with the results of our previous study on γ-butyrolactone-induced transient absence seizure. Our results suggest that the pathogenesis mechanism underlying absence seizure may involve the molecular events contributed by these proteins.  相似文献   

9.
Emerging evidence suggests that GPR155, an integral membrane protein related to G-protein coupled receptors, has specific roles in Huntington disease and autism spectrum disorders. This study reports the structural organization of mouse GPR155 gene and the generation of five variants (Variants 1-5) of GPR155 mRNA, including so far unknown four variants. Further, it presents the level of expression of GPR155 mRNA in different mouse tissues. The mRNAs for GPR155 are widely expressed in adult mouse tissues and during development. In situ hybridization was used to determine the distribution of GPR155 in mouse brain. The GPR155 mRNAs are widely distributed in forebrain regions and have more restricted distribution in the midbrain and hindbrain regions. The highest level of expression was in the lateral part of striatum and hippocampus. The expression pattern of GPR155 mRNAs in mouse striatum was very similar to that of cannabinoid receptor type 1. The predicted protein secondary structure indicated that GPR155 is a 17-TM protein, and Variant 1 and Variant 5 proteins have an intracellular, conserved DEP domain near the C-terminal.  相似文献   

10.
Galectin-1 is a member of β-galactoside-binding lectins expressed in a variety of mammalian tissues. We report here that galectin-1 mRNA is abundantly expressed in the mouse reproductive organs such as the uterus and ovary. Uterine expression of galectin-1 mRNA is specifically regulated in the embryonic implantation process. Its expression increased at a high level on the fifth day post coitum (dpc 5) when embryos hatched into the endometrial epithelial cells. In the absence of embryos, however, galectin-1 expression in the mouse uterus decreased on dpc 5. In the delayed implantation mice, galectin-1 mRNA level was augmented by the termination of the delay of implantation. Ovarian steroids progesterone and estrogen differentially regulated galectin-1 mRNA level in uterine tissues. Treatment with RU486, a progesterone receptor antagonist, blocked progesterone-induced galectin-1 mRNA level in uterine tissues of ovariectomized mouse. ICI182780, a pure estrogen receptor antagonist, clearly blocked the estrogen effect. Taken together, galectin-1 gene expression in the uterine tissues was regulated by ovarian steroids and this regulation correlated with the implantation process. Mol. Reprod. Dev. 48:261–266, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.  相似文献   

12.
董昕  钟警  周灵芝  吴洁  姜浩 《生物磁学》2009,(10):1824-1827,1808
目的:构建以绿色荧光蛋白(GFP)为报告基因的重组表达质粒pEGFP—C1—PPARγ,观察小鼠PPARγ基因在MDA-MB-231细胞中的表达及定位。方法:采用克隆和亚克隆技术构建小鼠PPARγ基因真核表达载体,脂质体Lip2000介导转染MDA—MB-231细胞,real—time PCR和western—blot验证其mRNA和蛋白的表达,荧光显微镜观察该基因亚细胞定位。结果:酶切和测序结果证实重组质粒含有PPAIh编码区序列且插入方向正确,转染后观察该基因亚细胞定位于胞核,胞质有弥散分布。结论:成功构建了小鼠PPARγ基因真核表达载体,该基因在MDA—MB-231细胞中成功表达,PPARγ基因主要集中表达于胞核。  相似文献   

13.
14.
小鼠睾丸特异表达基因TSEG-1的克隆及序列分析   总被引:1,自引:0,他引:1  
从表达序列标签(expressed sequence tags, ESTs)数据库ZooDDD中获得小鼠正常睾丸表达的EST, 通过dbEST数据库检索出与其高度同源的EST序列, 构建EST叠加群(contigs), Biolign软件拼接, GeneScan软件预测contigs对应的基因组序列中的外显子、内含子; 针对开放阅读框设计引物序列, 采用RT-PCR从小鼠睾丸组织中克隆新基因的cDNA, 分析该基因在小鼠各脏器中的mRNA表达, 并对测序结果进行生物信息学分析。结果表明: 在小鼠X染色体的1 668~2 011 kb间克隆出一新基因TSEG-1, 全长为510 bp, 开放阅读框为336 bp, 编码111氨基酸, 分子量12.84258 kDa, 等电点11.4000。RT-PCR证实该基因开放阅读框正确, 在小鼠睾丸组织中特异性表达, 且与小鼠其他cDNA 无同源性, 获得GenBank 登录号EU079024。功能区分析发现TSEG-1蛋白可能为一种跨膜蛋白, 跨膜区位于第41~61氨基酸残基。TSEG-1基因与人类睾丸特异性组蛋白2a变异体基因有较高同源性, 在TSEG-1基因5′-端非编码侧翼预测发现存在1个启动子区域, 范围为680 bp。 TSEG-1蛋白可能有4个抗原性位点, 2个特异性蛋白激酶的磷酸化位点, 其亚细胞定位可能位于线粒体。小鼠睾丸特异性基因TSEG-1的克隆为进一步研究其生物学功能和表达调控奠定了基础。  相似文献   

15.
Peroxiredoxins are antioxidative enzymes that catalyze the reduction of alkyl hydroperoxides to alcohols and hydrogen peroxide to water. 1-Cys peroxiredoxins (1-Cys Prxs) perform important roles during late seed development in plants. To characterize their biochemical functions in plants, a 1Cys-Prx gene was cloned from a Chinese cabbage cDNA library and designated as “C1C-Prx”. Glutamine synthetase (GS) protection and hydrogen peroxide reduction assays indicated that C1C-Prx was functionally active as a peroxidase. Also C1C-Prx prevented the thermal- or chemical-induced aggregation of malate dehydrogenase and insulin. Hydrogen peroxide treatment changed the mobility of C1C-Prx on a two-dimensional gel, which implies overoxidation of the conserved Cys residue. Furthermore, after overoxidation, the chaperone activity of C1C-Prx increased approximately two-fold, but its peroxidase activity decreased to the basal level of the reaction mixture without enzyme. However, according to the structural analysis using far-UV circular dichroism spectra, intrinsic tryptophan fluorescence spectra, and native-PAGE, overoxidation did not lead to a conformational change in C1C-Prx. Therefore, our results suggest that 1-Cys Prxs function not only to relieve mild oxidative stresses but also as molecular chaperones under severe conditions during seed germination and plant development, and that overoxidation controls the switch in function of 1-Cys-Prxs from peroxidases to molecular chaperones.  相似文献   

16.
2-Cys peroxiredoxin (Prx) is a novel cellular peroxidase that reduces peroxides in the presence of thioredoxin, thioredoxin reductase, and nicotinamide adenine dinucleotide phosphate (NADPH) and that functions in H(2)O(2)-mediated signal transduction. Recent studies have shown that 2-cys Prx can be inactivated by cysteine overoxidation in conditions of oxidative stress. Therefore, peroxidase activity, rather than the protein level, of 2-cys Prx is the more important measure to predict its cellular function. Here, we introduce a modified activity assay method for mammalian 2-cys Prx based on yeast nonselenium thioredoxin reductase. Yeast thioredoxin reductase is expressed in Escherichia coli cells and purified at high yield (40 mg/L of culture broth) as an active flavoprotein by combined diethyl aminoethyl (DEAE) and phenyl hydrophobic chromatography. The optimal concentrations of yeast thioredoxin and thioredoxin reductase required to achieve maximum mammalian 2-cys Prx activity are 3.0 and 1.5 microM, respectively. This modified assay method is useful for measuring 2-cys Prx activity in cell lysates and can also be adapted for a 96-well plate reader for high-throughput screening of chemical compounds that target 2-cys Prx.  相似文献   

17.
18.
The embryonic poly(A)-binding protein (EPAB) functions in the translational regulation of the maternal messenger RNAs (mRNAs) required during oocyte maturation, fertilization, and early embryo development. Since there is no antibody specific to mammalian EPAB protein, all studies related to the Epab gene could be performed at the mRNA levels except for the investigations in the Xenopus. In this study, we have produced an EPAB-specific antibody. When we examined its expressional distribution in the mouse gonadal and somatic tissues, the EPAB protein was found to be expressed only in the mouse ovary and testis tissues, but it is undetectable level in the somatic tissues including stomach, liver, heart, small intestine, and kidney. Additionally, the spatial and temporal expression patterns of the EPAB and poly(A)-binding protein cytoplasmic 1 (PABPC1) proteins were analyzed in the mouse germinal vesicle (GV) and metaphase II (MII) oocytes, one-cell, and two-cell embryos. While EPAB expression gradually decreased from GV oocytes to two-cell embryos, the PABPC1 protein level progressively increased from GV oocytes to one-cell embryos and remarkably declined in the two-cell embryos ( P < 0.05). We have also described herein that the EPAB protein interacted with Epab, Pabpc1, Ccnb1, Gdf9, and Bmp15 mRNAs dependent upon the developmental stages of the mouse oocytes and early embryos. As a result, we have first produced an EPAB-specific antibody and characterized its expression patterns and interacting mRNAs in the mouse oocytes and early embryos. The findings suggest that EPAB in cooperation with PABPC1 implicate in the translational control of maternal mRNAs during oogenesis and early embryo development.  相似文献   

19.
Human tumor endothelial marker 1/endosialin (TEM1/endosialin) was recently identified as a novel tumor endothelial cell surface marker potentially involved in angiogenesis, although no specific function for this novel gene has been assigned so far. It was reported to be expressed in tumor endothelium but not in normal endothelium with the exception of perhaps the corpus luteum. Here we describe the cDNA and genomic sequences for the mouse Tem1/endosialin homolog, the identification and characterization of its promoter region, and an extensive characterization of its expression pattern in murine and human tissues and murine cell lines in vitro. The single copy gene that was mapped to chromosome 19 is intronless and encodes a 92-kDa protein that has 77.5% overall homology to the human protein. The remarkable findings are 1) this gene is ubiquitously expressed in normal human and mouse somatic tissues and during development, and 2) its expression at the mRNA level is density-dependent and up-regulated in serum-starved cells. In vitro, its expression is limited to cells of embryonic, endothelial, and preadipocyte origin, suggesting that the wide distribution of its expression in vivo is due to the presence of vascular endothelial cells in all the tissues. The ubiquitous expression in vivo is in contrast to previously reported expression limited to corpus luteum and highly angiogenic tissues such as tumors and wound tissue.  相似文献   

20.
Mammalian circadian clock genes Per1 and Per2 are rhythmically expressed not only in the suprachiasmatic nucleus where the mammalian circadian clock exists, but also in other brain regions and peripheral tissues. The induced circadian oscillation of Per genes after treatment with high concentrations of serum or various drugs in cultured cells suggests the ubiquitous existence of the oscillatory mechanism. These treatments also result in a rapid surge of expression of Per1. It has been shown that multiple signaling pathways are involved in Per1 gene induction in culture cells. We used a dispersed primary cell culture made up of mouse cerebellar granule cells to examine the stimuli inducing the mPer genes and their signaling pathways in neuronal tissues expressing mPer genes. We demonstrated that mPer1, but not mPer2, mRNA expression was dependent on the depolarization state controlled by extracellular KCl concentration in the granule cell culture. Nifedipine treatment reduced mPer1 induction, suggesting that mPer1 mRNA expression depends on intracellular calcium concentration regulated through a voltage-dependent Ca2+ channel. Transient mPer1 mRNA induction was observed after elevating KCl concentration in the medium from 5 mM to 25 mM. This increased expression was suppressed by a calmodulin antagonist, or CaMKII/IV inhibitor, but not by MEK inhibitors. Addition of pituitary adenylate cyclase-activating polypeptide-38 to the medium also induced transient Per1 gene expression. This induction was mimicked by dibutyryl-cAMP and suppressed by a protein kinase A (PKA) inhibitor, but not by MEK inhibitors. These results suggest that Ca2+/calmodulin-dependent protein kinase II/IV- and PKA-dependent pathways are involved in high-KCl and PACAP-induced mPer1 induction, respectively, and neural tissues use multiple signaling pathways for mPer1 induction similar to culture cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号