首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The hemorrhagic, procoagulant, anticoagulant, protease, arginine ester hydrolase, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, phospholipase A and L-amino acid oxidase activities of 50 venom samples from 20 taxa of rattlesnake (genera Crotalus and Sistrurus) were examined. 2. The results show that notwithstanding individual variations in the biological activities of Crotalus venoms and the wide ranges of certain biological activities observed, there are some common characteristics at the genus and species levels. 3. The differences in biological activities of the venoms compared can be used for differentiation of the species. Particularly useful for this purpose are the thrombin-like enzyme, protease, arginine ester hydrolase, hemorrhagic and phospholipase A activities and kaolin-cephalin clotting time measurements.  相似文献   

2.
1. The lethalities, anticoagulant effects, hermorrhagic, thrombin-like enzyme, hyaluronidase, protease, arginine ester hydrolase, 5'-nucleotidase, L-amino acid oxidase, alkaline phosphomonoesterase, phosphodiesterase and phospholipase A activities of twenty-three samples of venoms from twelve species of Asian lance-headed pit vipers (genus Trimeresurus) were examined. 2. The results indicate that notwithstanding individual variations in venom properties, the differences in biological properties of the Trimeresurus venoms can be used for the differentiation of venoms from different species of Trimeresurus. 3. The results also suggest that differences in the biological properties of snake venoms are useful parameters in the classification of snake species. 4. Our results indicate that venoms from the species T. okinavensis exhibited biological properties markedly different from other Trimeresurus venoms examined. This observation supports the recently proposed reclassification of T. okinavensis as a member of the genus Ovophis, rather than the genus Trimeresurus.  相似文献   

3.
A comparative study of the biological properties of some sea snake venoms.   总被引:3,自引:0,他引:3  
1. The protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, procoagulant, anticoagulant and hemorrhagic activities of ten samples of venoms from seven taxa of sea snakes were examined. 2. The results show that venoms of sea snakes of both subfamilies of Hydrophiinae and Laticaudinae are characterized by a very low level of enzymatic activities, except phospholipase A activity and, for some species, hyaluronidase activity. 3. Because of the low levels of enzymatic activities and the total lack of procoagulant and hemorrhagic activities, venom biological properties are not useful for the differentiation of species of sea snakes. Nevertheless, the unusually low levels of enzymatic activities of sea snake venoms may be used to distinguish sea snake venoms from other elapid or viperid venoms.  相似文献   

4.
1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.  相似文献   

5.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 31 samples of venom from three species of Agkistrodon (A. bilineatus, A. contortrix and A. piscivorus) and 10 venom samples from five other related species belonging to the same tribe of Agkistrodontini were examined. 2. The results indicate that interspecific differences in certain biological activities of the Agkistrodon venoms are more marked than individual variations of the activities, and that these differences can be used for differentiation of the species. Particularly useful for this purpose are the phosphodiesterase, arginine ester hydrolase and anticoagulant activities of the venoms. 3. Venoms of the subspecies of A. contortrix and A. piscivorus do not differ significantly in their biological activities.  相似文献   

6.
1. The biological properties of twelve samples of venoms from all four species of Dendroaspis (mamba) were investigated. 2. Dendroaspis venoms generally exhibited very low levels of protease, phosphodiesterase and alkaline phosphomonoesterase; low to moderately low level of 5'-nucleotidase and very high hyaluronidase activities, but were devoid of L-amino acid oxidase, phospholipase A, acetylcholinesterase and arginine ester hydrolase activities. The unusual feature in venom enzyme content can be used to distinguish Dendroaspis venoms from other snake venoms. 3. All Dendroaspis venoms did not exhibit hemorrhagic or procoagulant activity. Some Dendroaspis venoms, however, exhibited strong anticoagulant activity. The intravenous median lethal dose of the venoms ranged from 0.5 microgram/g mouse to 4.2 micrograms/g mouse. 4. Venom biological activities are not very useful for the differentiation of the Dendroaspis species. The four Dendroaspis venoms, however, can be differentiated by their venom SDS-polyacrylamide gel electrophoretic patterns.  相似文献   

7.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms of 13 taxa of Vipera were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate the presence of certain common characteristics among the venoms, particularly if V. russelli is excluded from the comparison. The results also support the recently proposed reassignment of V. russelli to a separate genus. 3. The data show that information on venom biological properties can be used for differentiation of venoms of many species of Vipera. Particularly useful for this purpose are the protease, phosphodiesterase, phospholipase A and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.  相似文献   

8.
The cobras Naja naja and N. kaouthia are abundant in eastern and north-eastern India, accounting for maximum snakebite deaths. Here we report on variation in the composition of Naja kaouthia and N. naja venom from eastern India on corresponding differences in the severity of pathogenesis. These two venoms differ in chromatographic elution profile through Sephadex G-50 and enzyme activity, protein and carbohydrate contents associated with each fraction. The presence of greater amounts of basic phospholipase A2, L-amino acid oxidase and low molecular weight membrane active polypeptides in the N. naja venom makes it more toxic than N. kaouthia venom. A commercial polyvalent antivenom raised against N. naja venom inactivates lethality and variety of toxic effects of homologous venom more effectively than N. kaouthia venom.  相似文献   

9.
Malayan cobra (Naja naja sputatrix) venom was found to exhibit an in vitro anticoagulant activity that was much stronger than most common cobra (genus Naja) venoms. The most potent anticoagulants of the venom are two lethal phospholipase A2 enzymes with pI's of 6.15 and 6.20, respectively. The anticoagulant activity of the venom is due to the synergistic effect of the venom phospholipase A2 enzymes and polypeptide anticoagulants. Bromophenacylation of the two phospholipase A2 enzymes reduced their enzymatic activity with a concomitant drop in both the lethal and anticoagulant activities.  相似文献   

10.
1. The hemorrhagic, procoagulant, anticoagulant, protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, arginine ester hydrolase, phospholipase A, 5'-nucleotidase and hyaluronidase activities of 39 samples of venoms from 13 species (15 taxa) of Australian elapids were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. The results indicate that Australian elapid venoms can be divided into two groups: procoagulant Australian venoms (including N. scutatus, N. ater, O. scutellatus, O. microlepidotus, P. porphyriacus, T. carinatus, H. stephensii and P. textilis) and non-procoagulant Australian venoms (including A. superbus, P. colletti, P. australis, P. guttatus and A. antarcticus). 3. The non-procoagulant Australian venoms exhibited biological properties similar to other elapid venoms, while the procoagulant Australian venoms exhibited some properties characteristic of viperid venoms. 4. The data show that information on venom biological properties can be used for differentiation of many species of Australian elapids. 5. Particularly useful for this purpose are the hyaluronidase, alkaline phosphomonoesterase, acetylcholinesterase, and the procoagulant activities and the Sephadex G-75 gel filtration patterns of the venoms.  相似文献   

11.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, alkaline phosphomonoesterase, 5'-nucleotidase, hyaluronidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 26 samples of venoms from 13 species of Bothrops were determined, and the Sephadex G-75 gel filtration patterns for some of the venoms also examined. 2. The results show that while there are considerable individual variations in the biological activities of many of the Bothrops venoms tested, there are some common characteristics at the genus and species levels. 3. The differences in the biological properties of the Bothrops venoms tested can be used for the differentiation of most Bothrops species examined.  相似文献   

12.
The full amino acid sequence of the acidic phospholipase A2 from Indian cobra (Naja naja naja) venom was determined and its tertiary structure examined by circular dichroism (CD). The sequence was aligned with other sequences of secreted phospholipase A2 from snakes of the genus Naja, using the progressive alignment method of Feng and Doolittle (J. Mol. Evol. (1987) 25, 351-360). The primary sequence of Naja naja naja phospholipases A2 shows up to 85% identity with the other acidic Naja phospholipase A2. CD studies indicate a 40-50% alpha-helical content in a tertiary structure which resists denaturation at high temperature, with or without chaotropic salts.  相似文献   

13.
Two phospholipases A2, CM-I and CM-II, from Aspidelaps scutatus venom were purified by gel filtration followed by ion-exchange chromatography on CM-cellulose. The enzymes consist of 119 amino acids including fourteen half-cystines. The complete primary structure of CM-II has been determined. The sequence and the invariant amino acid residues resemble those of the phospholipase A2 from the genus Naja. The toxicity of the enzymes is comparable to those encountered for the phospholipases A2 from African cobra venoms. The phospholipase A2 (CM-II) contains two histidine residues which are located at position 20 and the reactive site (histidine-47) of the enzyme.  相似文献   

14.
1. The hemorrhagic, procoagulant, anticoagulant, phosphodiesterase, hyaluronidase, alkaline phosphomonoesterase, 5'-nucleotidase, arginine ester hydrolase, phospholipase A, L-amino acid oxidase and protease activities of 30 samples of venoms from nine species (12 taxa) of the old world vipers (Subfamily Viperinae) including snakes from the genera Bitis, Causus, Cerastes, Echis, Eristicophis and Pseudocerastes, were determined and the Sephadex G-75 gel filtration patterns for some of the venoms were also examined. 2. Examination of the biological properties of the venoms of the Viperinae tested indicates the presence of common venom biological characteristics at the various phylogenic levels. 3. Venoms of most species of the Viperinae examined exhibited characteristic biological properties at the species level, and this allows the differentiation of the Viperinae species by differences in their biological properties. 4. Particularly useful for this purpose, are the effects of venom on kaolin-cephalin clotting time of platelet poor rabbit plasma and the Sephadex G-75 gel filtration pattern and arginine ester hydrolase activity of the venom.  相似文献   

15.
Treatment of guinea pig lymphocytes with Clostridium perfringens phospholipase C but not with Naja naja snake venom phospholipase A2 increased ornithine decarboxylase activity. The increase in ornithine decarboxylase activity was suppressed by actinomycin D or cycloheximide, suggesting that de novo syntheses of RNA and protein are necessary for the increase in the enzyme activity. These results suggest that the activation of phospholipase C rather than that of phospholipase A2 is responsible for induction of ornithine decarboxylase during lymphocyte transformation.  相似文献   

16.
The variation in the composition of Naja naja venoms from three neighbouring districts of West Bengal, eastern India and the corresponding differences in the severity of pathogenesis due to venom composition variation are reported. These venom samples differ with respect to chromatographic elution profile and enzyme activity associated with each fraction. Presence of higher quantities of basic phospholipase and plasma protein hydrolase in the venom samples of Burdwan and Purulia make them more toxic than Midnapur venom sample. A polyvalent antivenom manufactured in western India was hardly effective in neutralizing the pathobiological manifestation of the venom samples from eastern India.  相似文献   

17.
Venom of Loxosceles reclusa free from impurities was expressed from venom glands collected by microdissection. Polyacrylamide gel electrophoresis of the venom at pH 8.3 demonstrated 7 or 8 major plus 3 or 4 minor components. Upon electrophoresis at pH 4.9 two major components plus 3 or 4 minor components were noted. Monophoretic hyaluronidase prepared by Sephadex gel filtration and electrophoresis at pH 8.3 exhibited optimum activity from pH 5.0 to 6.6. Sodium dodecyl sulfate gel electrophoresis of purified hyaluronidase revealed two components with estimated molecular weights of 33,000 and 63,000. The purified hyaluronidase exhibited activity against chondroitin sulfate, types A, B, and C at approximately 20–30% of that upon hyaluronic acid. The enzyme was inhibited 10–20% by the heavy metal ions, Fe+3 and Cu+2. Rabbit antivenom inhibited the spreading effect of whole venom in vivo and completely inhibited hyaluronidase in vitro.Incorporation of [14C]leucine into the spider venom led to the separation of hyaluronidase from the dermonecrotic activity of the venom.The venom demonstrated activity against carbobenzoxy-l-tyrosine-p-nitrophenyl ester and β-naphthylacetate which was inhibited approximately 65% by 2.5 × 10?3m levels of EDTA and EGTA but not by 2.5 × 10?4mo-phenanthroline. The esterase activity resisted concentrations of p-chloromercuribenzoate which totally inactivated papain. The venom appeared devoid of collagenase, dipeptidase, acetylcholinesterase, phosphodiesterase, ribonuclease A, and deoxyribonuclease.  相似文献   

18.
The allergenic activities of four purified components of honeybee venom were studied by using histamine release from leukocytes of bee sting-allergic patients. The components studied were hyaluronidase, phospholipase A2, melittin and apamin with molecular weights, respectively, of about 50,000, 15,800, 2840 and 2038 d. In six of the seven patients studied, hyaluronidase and phospholipase were, respectively, on the average about two and eight times more active by weight than the venom. The situation was reversed in one patient in that hyaluronidase and phospholipase A2 were, respectively, 90 and 0.5 times more active than the venom. With this single exception, hyaluronidase and phospholipase were about equally active on a molar basis as allergens. Melittin was on the average about one-tenth as active as the venom, and apamin was inactive as an allergen.Chemical modifications of phospholipase A2 were carried out. Succinylation of eight of its eleven amino groups yielded a derivative that retained 4% of the enzymic activity of the native enzyme. Reduction and carboxymethylation of its four disulfide bonds or cyanogen bromide cleavage of its three methionyl bonds yielded enzymatically inactive derivatives. These derivatives showed varying decreases of allergenic activities when compared to the native enzyme. The results indicate that the antigenic determinants of phospholipase depend on the charge, the amino acid sequence and the conformation of the molecule.  相似文献   

19.
The kinetics of phospholipid hydrolysis by cobra venom phospholipase A2 were examined and compared to those of phospholipase A2 from porcine pancreas, Crotalus adamanteus (rattlesnake) venom, and bee venom. Only the enzyme from Naja naja naja (cobra) venom was found to be activated significantly by phosphorylcholine-containing compounds when hydrolyzing phosphatidylethanolamine. The cobra venom enzyme was also the only one in which these activators induced protein aggregation. The parallel specificity for activators and aggregators suggests that these two phenomena are linked. Product effects were also shown to vary between these four phospholipases. These effects manifest themselves in nonlinear time courses, in changes in steady state velocity, and in the differential effects of serum albumin on reaction rates. Different effects were even seen for the same enzyme when acting on different substrates. A model is presented to account for these observations; its main features are enzyme activation by an activator molecule, whose specificity depends on the enzyme, and an activator-induced aggregation of the enzyme.  相似文献   

20.
1. The enzymatic, hemorrhagic, procoagulant and anticoagulant activities of venoms of some animals including snakes, lizards, toads, scorpions, spider, wasps, bees and ants were compared.2. Snake venom was the richest source of enzymes among the animal venoms. Most other animal venoms were devoid of phosphodiesterase, l-amino acid oxidase, alkaline phosphomonoesterase and acetylcholinesterase activities and only a few exhibited arginine ester hydrolase activity. These venoms, however, exhibited wide ranges of protease, 5'-nucleotidase and hyaluronidase activities. Most of the animal venoms examined exhibited some phospholipase A activity.3. Other than snake venoms, only venoms of the toad Bufo calamita and the lizards were hemorrhagic, and only venoms of the social wasps, social bees and harvester ant exhibited strong anticoagulant activity. Procoagulant activity occurs only in snake venoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号