首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cleavable cross-linking reagent, dimethyl-3,3'-dithiobispropionimidate, was used to study the molecular organization of adrenocortical cytochrome P-450scc. Extensive cross-linking was found to occur, resulting in the formation of heterologous oligomers up to octamer. The covalently cross-linked complex of adrenocortical cytochrome P-450scc with adrenodoxin has been obtained by using dimethyl-3,3'-dithiobispropionimidate. In the presence of NADPH and adrenodoxin reductase, electron transfer to cytochrome P-450scc occurs in the complex, and, in the presence of cholesterol, the latter effectively oxidizes to pregnenolone. By using covalently immobilized adrenodoxin and heterobifunctional reagent, N-succinimidyl-3-(2-pyridyldithio)propionate, the adrenodoxin-binding site was shown to be located in the heme-containing, catalytic domain of cytochrome P-450scc. The data obtained indicate the existence of two different sites on the adrenodoxin molecule that are responsible for the interaction with adrenodoxin reductase and cytochrome P-450scc. This is consistent with the model mechanism of electron transfer in the organized complex.  相似文献   

2.
In order to elucidate the mechanism of the electron transfer reaction of mitochondrial steroid hydroxylase, the reduction reaction of cytochrome P-450scc (P-450scc) catalyzed by covalently cross-linked complexes between adrenodoxin reductase (AR) and adrenodoxin (AD) was studied. The reduction rate with the covalent AR-AD complex was very slow (0.030 min-1, as the flavin turnover number) compared with the reduction catalyzed by AR and AD (4.6 min-1). When free AD was added to the reaction mixture containing the AR-AD complex, the rate increased about 30 times. The AD dimer [(AD)2], and a complex between AR and the AD dimer [AR-(AD)2] were then prepared. The Vmax for the P-450scc reduction activity of AR with (AD)2 was 50% of that of AR with AD. The Km value for the total concentration of AD in the P-450scc reduction reaction mixture containing AR and (AD)2 was found to be the same as that in the reaction mixture containing AR and AD. P-450scc reduction by AR-(AD)2 was about 5 times faster than that by AR-AD. The addition of free AD to the AR-(AD)2 complex enhanced the P-450scc reduction about 30 times. AR-AD and AR-(AD)2 were able to reduce external AD, cytochrome c, and acetylated cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1989,28(25):9777-9784
Reduction of cytochrome P-450scc(SF) (SF, substrate free) purified from bovine adrenocortical mitochondria with sodium dithionite (Na2S2O4) or with beta-NADPH mediated by catalytic amounts of adrenodoxin and adrenodoxin reductase in the presence of phenyl isocyanide produced a ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex with Soret absorbance maximum at 455 nm having a shoulder at 425 nm. On the other hand, when a preformed cytochrome P-450scc(SF)-adrenodoxin complex was reduced chemically or enzymatically under the same conditions, the absorbance spectrum showed drastic changes, i.e., an increase in intensity at 425 nm and a concomitant decrease in intensity at 455 nm. Similar spectral changes could be produced by addition of the same amount of reduced adrenodoxin afterward to the ferrous cytochrome P-450scc(SF)-phenyl isocyanide complex. Titration experiments with adrenodoxin showed that (1) a 1:1 stoichiometric saturation of the spectral change was obtained for both the absorbance increase at 425 nm and the absorbance decrease at 455 nm, (2) there was no spectral change in the presence of 0.35 M NaCl, and (3) there was no spectral change for cytochrome P-450scc(SF) whose Lys residue(s) essential to the interaction with adrenodoxin had been covalently modified with PLP. These results suggest that ternary complex formation of ferrous cytochrome P-450scc(SF)-phenyl isocyanide with reduced adrenodoxin caused a conformational change around the ferrous heme moiety. By analysis of temperature and pH dependencies of the spectral change of the ternary complex, it was suggested that this conformational change may reflect the essential step for electron transfer from reduced adrenodoxin to the ferrous-dioxygen complex of cytochrome P-450scc.  相似文献   

4.
Some new relations between cytochrome P-450-dependent monooxygenases were discovered. Cytochrome b5, a representative of "microsomal" monooxygenases, was shown to form a highly specific complex with cytochrome P-450scc, a member of the "ferredoxin" monooxygenase family. This interaction is characterized by a dissociation constant, Kd, of 0.28 microM. The cytochrome P-450scc-cytochrome b5 complex may be cross-linked with water-soluble carbodiimide. Using proteolytic modification of cytochrome b5, it was shown that both hydrophilic and hydrophobic fragments of cytochrome b5 are involved in the interaction with cytochrome P-450scc. Cytochrome b5 immobilized via amino groups is an effective affinity matrix for cytochrome P-450scc purification. The role of some amino acid residues in cytochrome P-450scc interaction with cytochrome b5 was studied. The role and the nature of complexes in cytochrome P-450-dependent monooxygenases as well as interrelationships between "microsomal" and "ferredoxin" monooxygenases are discussed.  相似文献   

5.
Binary and ternary complexes of bovine adrenocortical mitochondrial cytochrome P-450scc with adrenodoxin and adrenodoxin reductase.adrenodoxin complex are formed in the presence of cholesterol and Emulgen 913. Both cholesterol and Emulgen 913 are required for the binding of cytochrome P-450scc with adrenodoxin. Since phospholipids are able to replace Emulgen 913 in this reaction, in vivo phospholipids of the mitochondrial inner membrane appear to play the function of the detergent. The dissociation constants of the cytochrome.adrenodoxin complex are 0.3 to 0.4 microM at 130 microM dimyristoylphosphatidylcholine and 0.9 microM at 120 microM Emulgen 913, whereas the dissociation constant for the ternary complex of cytochrome P-450scc with adrenodoxin reductase and adrenodoxin is 4.0 microM at 150 microM Emulgen 913. The stoichiometry of binary and ternary complexes reveals the 1:1 and 1:1:1 molar ratios, respectively, judging from chemical analyses after the fractionation of the complexes by gel filtration. Emulgen 913, Tween 20, ethylene glycol, myristoyllysophosphatidylcholine, dimyristoylphosphatidylcholine, and phosphatidylethanolamine show the enhanced activity of cholesterol side chain cleavage reaction with cytochrome P-450scc, adrenodoxin, adrenodoxin reductase, and NADPH. These results, in conjunction with earlier experiments, lead us to the proposal on the structure of the hydroxylase complex in the membrane and to the hypothesis on the regulation of the enzymatic activity by the availability of substrate cholesterol to the cytochrome. Hence, we propose a mobile P-450scc hypothesis for the response of the mitochondrion to adrenocorticotropic hormone stimuli.  相似文献   

6.
Treatment of cytochrome P-450scc with fluorescein isothiocyanate (FITC) resulted in covalent labeling with 1.0 +/- 0.1 eq of FITC. Reverse-phase high performance liquid chromatography of tryptic and chymotryptic digests of the labeled protein revealed that a single FITC-labeled peptide accounted for 75% of the label. This peptide was found to be specifically labeled at lysine 338 by amino acid sequencing. The modification of lysine 338 with FITC resulted in 85 +/- 15% inhibition of adrenodoxin binding to cytochrome P-450scc. In a complementary experiment it was found that if a complex between adrenodoxin and native cytochrome P-450scc was formed in the presence of cholesterol and then treated with FITC, there was almost no labeling of lysine 338. The modification of lysine 338 by FITC was not inhibited by 22(R)-hydroxycholesterol, the first intermediate in the side chain cleavage reaction which binds to the active site 300 times more tightly than cholesterol itself. These experiments suggest that lysine 338 is located at the binding site for adrenodoxin and electrostatically interacts with one of the carboxylate groups on adrenodoxin that has been implicated in binding. The fluorescence emission of the FITC label on cytochrome P-450scc was only 14% as large as that of an equivalent concentration of FITC-labeled bovine serum albumin, suggesting that it was quenched by Forster energy transfer to the heme group.  相似文献   

7.
The single free cysteine at residue 95 of bovine adrenodoxin was labeled with the fluorescent reagent N-iodoacetylamidoethyl-1-aminonaphthalene-5-sulfonate (1,5-I-AEDANS). The modification had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc, suggesting that the AEDANS group at Cys-95 was not located at the binding site for these molecules. Addition of adrenodoxin reductase, cytochrome P-450scc, or cytochrome c to AEDANS-adrenodoxin was found to quench the fluorescence of the AEDANS in a manner consistent with the formation of 1:1 binary complexes. F?rster energy transfer calculations indicated that the AEDANS label on adrenodoxin was 42 A from the heme group in cytochrome c, 36 A from the FAD group in adrenodoxin reductase, and 58 A from the heme group in cytochrome P-450scc in the respective binary complexes. These studies suggest that the FAD group in adrenodoxin reductase is located close to the binding domain for adrenodoxin but that the heme group in cytochrome P-450scc is deeply buried at least 26 A from the binding domain for adrenodoxin. Modification of all the lysines on adrenodoxin with maleic anhydride had no effect on the interaction with either adrenodoxin reductase or cytochrome P-450scc, suggesting that the lysines are not located at the binding site for either protein. Modification of all the arginine residues with p-hydroxyphenylglyoxal also had no effect on the interaction with adrenodoxin reductase or cytochrome P-450scc. These studies are consistent with the proposal that the binding sites on adrenodoxin for adrenodoxin reductase and cytochrome P-450scc overlap, and that adrenodoxin functions as a mobile electron carrier.  相似文献   

8.
Covalent modification of cytochrome P-450scc (purified from bovine adrenocortical mitochondria) with pyridoxal 5'-phosphate (PLP) was found to cause inhibition of the electron-accepting ability of this enzyme from its physiological electron donor, adrenodoxin, without conversion to the "P-420" form. Reaction conditions leading to the modification level of 0.82 and 2.85 PLP-Lys residues per cytochrome P-450scc molecule resulted in 60% and 98% inhibition, respectively, of electron-transfer rate from adrenodoxin to cytochrome P-450scc (with beta-NADPH as an electron donor via NADPH-adrenodoxin reductase and with phenyl isocyanide as the exogenous heme ligand of the cytochrome). It was found that covalent PLP modification caused a drastic decrease of cholesterol side-chain cleavage activity when the cholesterol side-chain cleavage enzyme system was reconstituted with native (or PLP-modified) cytochrome P-450scc, adrenodoxin, and NADPH-adrenodoxin reductase. Approximately 60% of the original enzymatic activity of cytochrome P-450scc was protected against inactivation by covalent PLP modification when 20% mole excess adrenodoxin was included during incubation with PLP. Binding affinity of substrate (cholesterol) to cytochrome P-450scc was found to be increased slightly upon covalent modification with PLP by analyzing a substrate-induced spectral change. The interaction of adrenodoxin with cytochrome P-450scc in the absence of substrate (cholesterol) was analyzed by difference absorption spectroscopy with a four-cuvette assembly, and the apparent dissociation constant (Ks) for adrenodoxin binding was found to be increased from 0.38 microM (native) to 33 microM (covalently PLP modified).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
M Tsubaki  A Hiwatashi  Y Ichikawa 《Biochemistry》1986,25(12):3563-3569
The effects of cholesterol and adrenodoxin binding on resonance Raman spectra of cytochrome P-450scc in both oxidized and CO-reduced states were examined. Upon cholesterol binding, oxidized cytochrome P-450scc showed a significant shift of spin equilibrium from low-spin to high-spin state. Addition of adrenodoxin caused a complete conversion of cholesterol-bound oxidized cytochrome P-450scc to a pure high-spin state that was considered to be in the hexacoordinated state judged by the v10 mode at 1620 cm-1 and v3 mode around 1485 cm-1. Cholesterol in substrate binding site may oppose a linear and perpendicular binding of carbon monoxide to the reduced heme iron, leading to the distorted Fe-C-O linkage. This is based on the following observations: (1) an increase of the Fe-CO stretching frequency to 483 from 477 cm-1 upon addition of cholesterol; (2) an enhanced photodissociability of bound carbon monoxide of CO complex of cytochrome P-450scc in the presence of cholesterol. As another aspect of the effect of cholesterol on the CO complex form of cytochrome P-450scc, the enhanced stability of the native form ("P-450" form) was observed. There was no additional effect of reduced adrenodoxin on the Raman spectra of the CO-reduced form of cytochrome P-450scc.  相似文献   

10.
Cytochrome P-450scc as isolated is a cholesterol-depleted low-spin haemoprotein; addition of cholesterol results in formation of a high-spin complex. Cytochrome P-450scc--cholesterol is a one-electron acceptor on titration with NADPH. Cytochrome P-450scc--cholesterol can be anaerobically reduced to the ferrous state which, on oxygenation, forms an oxygenated cytochrome P-450scc--cholesterol complex. This oxygenated complex in the absence of adrenodoxin autoxidises to ferric cytochrome P-450scc--cholesterol without oxidation of cholesterol. The decay of the oxygenated complex is first-order, k = 9.3 X 10(-3) S-1 at 4 degrees C. The rate of autoxidation is influenced by pH, ionic strength and the chemical nature of bound sterol. The activation energy of autoxidation is 75 kJ mol-1. Addition of equimolar amounts of adrenodoxin to cytochrome P-450scc--cholesterol followed by stoichiometric reduction under anaerobic conditions and subsequent oxygenation, allows single catalytic turnover cycles of cytochrome P-450scc to be observed. This has led to detection of intermediates in the conversion of cholesterol to pregnenolone and a precursor/product sequence of cholesterol----22-hydroxycholesterol----20,22-dihydroxy-cholesterol ----pregnenolone has been established. Addition of oxidised adrenodoxin to oxygenated cytochrome P-450scc--cholesterol results in formation of 22-hydroxycholesterol.  相似文献   

11.
Bifunctional reagents 3,3'-dithiobis(succinimidyl propionate), 1-ethyl 3-(3-dimethylaminopropyl)carbodiimide and N-succinimidyl 3-(2-pyridyldithio)propionate have been used in an attempt to study molecular organization and covalent cross-linking of adrenodoxin reductase with adrenodoxin, the components of steroidogenic electron transfer system in bovine adrenocortical mitochondria. There was no cross-linking of individual proteins by the bifunctional reagents used, except for adrenodoxin cross-linking with water-soluble carbodiimide. Substantial cross-linking of adrenodoxin reductase with adrenodoxin was observed when water-soluble carbodiimide was used as cross-linking reagent. However, the cross-linked complex failed to transfer electrons. Significant amounts of the functional cross-linked complex (up to 42%) were observed when the proteins were cross-linked with N-succinimidyl 3-(2-pyridyldithio)propionate. Using gel filtration, ion-exchange chromatography and affinity chromatography on adrenodoxin-Sepharose, the complex was obtained in a highly purified form. In the presence of cytochrome P-450scc or cytochrome c, the cross-linked complex of adrenodoxin reductase with adrenodoxin was active in electron transfer from NADPH to heme proteins. The data obtained indicate that there are distinct binding sites on the adrenodoxin molecule responsible for the adrenodoxin reductase and cytochrome P-450scc binding, which suggests that steroidogenic electron transfer may be realized in an organized complex.  相似文献   

12.
Difference spectroscopy was used to measure the binding of cholesterol sulfate (CS) to cytochrome P-450scc. The uncomplexed cytochrome and the complex of the cytochrome with adrenodoxin (ADX) were both titrated with CS in order to test whether ADX increased the affinity of the cytochrome for the sterol sulfate. The addition of ADX to the cytochrome had different effects on the binding of the sterol sulfate depending on several factors including: (1) The method of preparation of the cytochrome P-450scc, (2) The concentration of cytochrome P-450scc, (3) The method by which CS was suspended in aqueous solution, and (4) Whether or not the solutions of cytochrome contained non-ionic detergents. The results of this study suggest that the method of isolation of cytochrome P-450scc, and non-ionic detergents, greatly modulate the apparent affinity of cytochrome P-450scc for CS. In the absence of detergents the addition of adrenodoxin to dilute solutions of cytochrome P-450scc appears to enhance only slightly (1- to 2-fold) the affinity of the cytochrome for the sterol sulfate.  相似文献   

13.
Cytochrome P-450scc can be reconstituted into a phospholipid bilayer in the absence of added detergent by incubation of purified hemoprotein with preformed phosphatidylcholine vesicles. Salt effects demonstrate that the primary interaction between the cytochrome and phospholipid vesicles is hydrophobic rather than ionic; in contrast, neither adrenodoxin reductase nor adrenodoxin will bind to phosphatidylcholine vesicles by hydrophobic interactions. Insertion of cytochrome P-450scc into a phospholipid bilayer results in conversion of the optical spectrum to a low spin type, but this transition is markedly diminished if cholesterol is incorporated within the bilayer. Vesicle-reconstituted cytochrome P-450scc metabolizes cholesterol within the bilayer (turnover = 13 nmol/min/nmol of cytochrome P-450scc); virtually all (greater than 94%) of the cholesterol within the vesicle is accessible to the enzyme. "Dilution" of cholesterol within the bilayer by increasing the phospholipid/cholesterol ratio at a constant amount of cholesterol and cytochrome P-450scc results in a decreased rate of side chain cleavage, and cytochrome P-450scc incorporated into a cholesterol-free vesicle cannot metabolize cholesterol within a separate vesicle. In addition, activity of the reconstituted hemoprotein is sensitive to the fatty acid composition of the phospholipid. These results indicate that the cholesterol binding site on vesicle-reconstituted cytochrome P-450scc is in communication with the hydrophobic bilayer of the membrane. The reducibility of vesicle-reconstituted cytochrome P-450scc as well as spectrophotometric and activity titration experiments show that all of the reconstituted cytochrome P-450scc molecules possess an adrenodoxin binding site which is accessible from the exterior of the vesicle. Activity titrations with adrenodoxin reductase also demonstrate that a ternary or quaternary complex among adrenodoxin reductase, adrenodoxin, and cytochrome P-450scc is not required for catalysis, a finding consistent with our proposed mechanism of steroidogenic electron transport in which adrenodoxin acts as a mobile electron shuttle between adrenodoxin reductase and cytochrome P-450 (Lambeth, J.D., Seybert, D.W., and Kamin, H. (1979) J. Biol. Chem. 254, 7255-7264.  相似文献   

14.
Highly specific antibodies against hemeprotein were obtained by immunizing rabbits with a highly purified cholesterol-hydroxylating cytochrome P-450scc from adrenocortical mitochondria. The antibodies do not specifically interact with other components of the adrenocortical electron transport chain, e. g., adrenodoxin reductase and adrenodoxin. Using double immunodiffusion technique (Ouchterlony method), it was shown that the antibodies did not precipitate the microsomal cytochromes P-450 LM2 and LM4, cytochrome b5 and 11 beta-hydroxylating cytochrome P-450 from adrenocortical mitochondria. Antibodies against cytochrome P-450scc inhibited the cholesterol side chain cleavage activity of cytochrome P-450scc in a reconstituted system. Limited proteolysis with trypsin and immunoelectrophoresis in the presence of specific antibodies revealed that antigenic determinants are present of the heme-containing catalytic domain of cytochrome P-450scc (F1) as well as on the domain responsible for the interaction with the phospholipid membrane (F2).  相似文献   

15.
Cytochrome P-450SCC and adrenodoxin were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The sample containing 94% of cross-linked complex and 6% of free cytochrome P-450SCC was obtained after purification on cholate-Sepharose. Cytochrome P-450SCC in cross-linked complex completely preserves its high-spin form in the presence of Tween 20 or pregnenolone. Utilization of radioactively labelled adrenodoxin, chemical cleavage of cytochrome P-450SCC from cross-linked complex with o-iodosobenzoic acid and HPLC for separation of peptides allow us to conclude that the complex of cytochrome P-450SCC with adrenodoxin was cross-linked through two amino acid sequences of cytochrome P-450SCC-Leu-88-Thr-107 and Leu-368-Gly-416. The cross-linked complex of adrenodoxin reductase, adrenodoxin and cytochrome P-450SCC with an apparent molecular mass of 114 kDa was obtained with N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. The composition of cross-linked complex was determined by immunoblotting and by evaluation of radioactivity using preliminary N-ethyl[2,3-14C]maleimide-modified adrenodoxin. From this data it appears that the ternary complex may exist in solution.  相似文献   

16.
A cross-linked ternary adrenodoxin reductase-adrenodoxin-cytochrome P-450scc complex with an apparent molecular mass of 114 kD was obtained, using N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)-hexanoate. The composition of the cross-linked complex was determined by immunoblotting and radioactivity measurements, using N-ethyl [2.3-14C]maleimide-premodified adrenodoxin. The data obtained suggest that the ternary complex may exist in solution.  相似文献   

17.
Chemical modification of cytochrome P-450scc by lysine-specific reagents has been performed. Modification of the hemoprotein was shown to result in the loss of its ability to interact with adrenodoxin. With a view of identifying lysine residues involved in the interaction with adrenodoxin, cytochrome P-450scc was modified by succinic anhydride in the presence of adrenodoxin. After the removal of ferredoxin, the modification was performed with the use of a radioactively labeled reagent. Subsequent hydrolysis of the succinic hemoprotein by chymotrypsin and separation of the peptides obtained by high pressure liquid chromatography resulted in the isolation of seven chymotryptic peptides containing labeled lysine residues. These amino acid sequences were identified. The role of lysine residues of cytochrome P-450scc in complex formation with adrenodoxin is discussed.  相似文献   

18.
Three histidine residues of bovine adrenodoxin, His-10, His-56, and His-62, were modified with diethyl pyrocarbonate. The order of the modification among the three histidines were monitored by measuring the proton NMR spectra. The modified adrenodoxin exhibited reduced affinity for adrenodoxin reductase as determined in cytochrome c reductase activity. In the presence of cholesterol, the modified adrenodoxin induced a high spin form of cytochrome P-450scc on complex formation in the same manner as native adrenodoxin. The spectral titration showed that adrenodoxin modified with diethyl pyrocarbonate exhibited a 5-fold higher Kd value than that of native adrenodoxin. These effects of the modification of adrenodoxin on the affinities for the redox partners were not proportional to the number of modified histidines determined by the optical absorbance change at 240 nm. Modification of adrenodoxin up to 2 histidine residues did not affect the affinity for the redox partners, but further modification on the third one resulted in an increase of apparent Km in cytochrome c reductase activity by 2-fold and of Kd for cytochrome P-450scc by 5-fold. The 1H NMR spectra of the modified adrenodoxin unequivocally demonstrated that histidine residues at His-10 and His-62 reacted more readily with diethyl pyrocarbonate than His-56 did, indicating that modification of His-56 was responsible for the reduction of binding affinities of adrenodoxin for redox partners. These results are consistent with the proposal that the residue of His-56 in adrenodoxin has an essential role in the electron transfer mechanism where adrenodoxin functions as a mobile shuttle.  相似文献   

19.
The synthesis of cholesterol side chain cleavage cytochrome P-450 (cytochrome P-450scc) and adrenodoxin was studied both in freshly harvested bovine granulosa cells and in granulosa cells maintained in primary monolayer culture. In addition, the action of follicle-stimulating hormone (FSH) and cyclic AMP analogs to stimulate the synthesis of cytochrome P-450scc was investigated in cultured cells. Precursor forms of cytochrome P-450scc and adrenodoxin were immunoisolated from a cell-free translation system directed by RNA prepared from freshly obtained granulosa cells that were not luteinized. Furthermore, the presence of cytochrome P-450scc in lysates of granulosa cells freshly obtained from very small follicles (containing less than 0.1 ml of follicular fluid) and in mitochondria of freshly obtained granulosa cells was demonstrated by using an immunoblotting technique. Continuous treatment of cultured granulosa cells with FSH or with cyclic AMP analogs (dibutyryl cyclic AMP or 8-bromo cyclic AMP) for 72 h increased incorporation of [35S]methionine into immunoprecipitable cytochrome P-450scc. Moreover, FSH, dibutyryl cyclic AMP, and 8-bromo cyclic AMP stimulated pregnenolone production by cultured granulosa cells (2.3-, 4.0-, and 7.5-fold increase over control, respectively), indicative of an increase in cholesterol side chain cleavage activity. The results of this study demonstrate for the first time the presence of two components of the cholesterol side chain cleavage system in freshly obtained granulosa cells, and provide direct evidence for the trophic effect of FSH and its presumed mediator, cyclic AMP, on the synthesis of cytochrome P-450scc in granulosa cells.  相似文献   

20.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号