首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN, EC 1.2.1.9) is a highly allosteric enzyme activated by glucose 1-phosphate (Glc1P). Recent kinetic analyses of two GAPN homologs from Sulfolobales show different allosteric behaviors toward the substrate glyceraldehyde-3-phosphate (GAP) and the allosteric effector Glc1P. In GAPN from Sulfolobus tokodaii (Sto-GAPN), Glc1P-induced activation follows an increase in affinity for GAP rather than an increase in maximum velocity, whereas in GAPN from Sulfolobus solfataricus (Sso-GAPN), Glc1P-induced activation follows an increase in maximum velocity rather than in affinity for GAP. To explore the molecular basis of this difference between Sto-GAPN and Sso-GAPN, we generated 14 mutants and 2 chimeras. The analyses of chimeric GAPNs generated from regions of Sto-GAPN and Sso-GAPN indicated that a 57-residue module located in the subunit interface was clearly involved in their allosteric behavior. Among the point mutations in this modular region, the Y139R variant of Sto-GAPN no longer displayed a sigmoidal K-type-like allostery, but instead had apparent V-type allostery similar to that of Sso-GAPN, suggesting that the residue located in the center of the homotetramer critically contributes to the allosteric behavior.  相似文献   

2.
The amino acid sequences of two thermophilic and five mesophilic glyceraldehyde-3-phosphate dehydrogenases have been compared with the known three-dimensional structure of this enzyme to determine the factors responsible for thermal stability. The changes are greatest in the S-loop regions at the center of the tetramer, which show a quantitative increase in hydrophobicity and polarity that can strengthen subunit interactions in a complementary manner. The S-loops also show increases in residue volume and bulk that may indicate a tighter packing at the molecular center. In addition, there are changes in the secondary structural parameters indicating that the helices, in particular, may be more stable in the thermophilic proteins. Increases in the hydrophobicity of domain and subunit contacts for the Thermus aquaticus glyceraldehyde-3-phosphate dehydrogenase may explain why it is the most thermostable protein in this series.  相似文献   

3.
The primary structure of the glyceraldehyde-3-phosphate dehydrogenase from the archaebacteria shows striking deviation from the known sequences of eubacterial and eukaryotic sequences, despite unequivocal homologies in functionally important regions. Thus, the structural similarity between the eubacterial and eukaryotic enzymes is significantly higher than that between the archaebacterial enzymes and the eubacterial and eukaryotic enzymes. This preferred similarity of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase structures does not correspond to the phylogenetic distances among the three urkingdoms as deduced from comparisons of ribosomal ribonucleic acid sequences. Indications will be presented that the closer relationship of the eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase resulted from a gene transfer from eubacteria to eukaryotes after the segregation of the three urkingdoms.  相似文献   

4.
1. NAD(P)+-induced changes in the aggregational state of prepurified NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were used to isolate the enzyme from Spinacia oleracea, Pisum sativaum and Hordeum vulgare. Each of the three plant species contains two separate isoenzymes. Isoenzyme 1 (fast moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 55--70% saturation. It shows two separate subunits in dodecylsulfate gels, which are probably arranged as A2B2 in the native enzyme molecule. Isoenzyme 2 (slow moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 70--95%. It contains a sigle subunit of the same Mr as subunit A in isoenzyme 1 and is apparently a tetramer (A4). The molecular weights of subunits A/B for spinach, peas and barley were determined as 38,000/40,000, 38,000/42,000 and 36,000/39,000 respectively. 2. The NAD-specific glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) was purified from Spinacia oleracea and Pisum sativum by affinity chromatography on blue Sepharose CL-6B. The enzyme from both plant species is shown to be a tetramer of subunits with Mr 39,000. 3. The present findings contrast with heterogeneous results obtained previously by other authors. These results suggested that there are considerable interspecific differences in the quaternary structure of glyceraldehyde-3-phosphate dehydrogenases from higher plants.  相似文献   

5.
6.
By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis. This approach has not only enabled us to alter the coenzyme specificity by minimal amino acid changes but also revealed factors that control the relative affinity of the enzyme for NAD and NADP.  相似文献   

7.
8.
9.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

10.
11.
Two different glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) activities, namely NAD- and NADP-dependent, have been found in cell extracts of the cyanelle-bearing photosynthetic protist Cyanophora paradoxa. Whereas the two G3P dehydrogenase activities were detected with similar specific activity levels (0.1 to 0.2 U/mg of protein) in extracts of the photosynthetic organelles (cyanelles), only the NAD-dependent activity was found in the cytosol. Thus, a differential intracellular localization occurred. The perfect overlapping of the two G3P dehydrogenase activity peaks of the cyanelle in both hydrophobic interaction chromatography and subsequent FPLC (fast protein liquid chromatography) gel filtration indicated that the two activities were due in fact to a single NAD(P)-dependent G3P dehydrogenase (EC 1.2.1.-) with a molecular mass of 148,000. SDS-PAGE of active fractions from FPLC gel filtration showed that the intensity of the major protein band (molecular mass, 38,000) of the enzyme preparation clearly paralleled the activity elution profile, thus suggesting a tetrameric structure for the cyanelle dehydrogenase. On the other hand, FPLC gel filtration analysis of the cytoplasmic fraction revealed a NAD-dependent G3P dehydrogenase with a native molecular mass of 142,000, being equivalent to the classical glycolytic enzyme (EC 1.2.1.12) present in the cytosol of all the organisms so far studied. The significance of these results is discussed taking into account that the cyanobacteria, photosynthetic prokaryotes which share many structural and biochemical features with cyanelles and are considered as their ancestors, have a similar NAD(P)-dependent G3P dehydrogenase.Abbreviation FPLC Fast protein liquid chromatography  相似文献   

12.
Sulfolobus tokodaii, a thermoacidophilic archaeon, possesses two structurally and functionally different enzymes that catalyze the oxidation of glyceraldehyde-3-phosphate (GAP): non-phosphorylating GAP dehydrogenase (St-GAPN) and phosphorylating GAP dehydrogenase (St-GAPDH). In contrast to previously characterized GAPN from Sulfolobus solfataricus, which exhibits V-type allosterism, St-GAPN showed K-type allosterism in which the positive cooperativity was abolished with concomitant activation by glucose 1-phosphate (G1P). St-GAPDH catalyzed the reversible oxidation of GAP to 1,3-bisphosphoglycerate (1,3-BPG) with high gluconeogenic activity, which was specific for NADPH, while both NAD+ and NADP+ were utilized in the glycolytic direction.Structured summary of protein interactionsGAPDH and GAPDH bind by molecular sieving (View interaction) GAPN and GAPN bind by 2.2molecular sieving (View interaction).  相似文献   

13.
Enzyme activity determinations and Western and Northern blot analyses have shown the presence of two catalytically different glyceraldehyde-3-phosphate dehydrogenases (GAPDH) in both vegetative cells and heterocysts of several N(2)-fixing Anabaena strains: (a) the gap2-encoded NAD(P)-dependent GAPDH2 (EC 1.2.1.59), the enzyme involved in the photosynthetic carbon assimilation pathway, which is present at higher levels in vegetative cells, and (b) the gap3-encoded NAD-dependent GAPDH3 (EC 1.2.1.12), presumably involved in carbohydrate anabolism and catabolism, which is the predominant GAPDH in heterocysts. In contrast, the gap1-encoded GAPDH1, which is the other NAD-dependent cyanobacterial GAPDH, is virtually absent in both cell types. These findings are discussed in the context of carbon metabolism of heterocystous N(2)-fixing cyanobacteria.  相似文献   

14.
Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.  相似文献   

15.
16.
17.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) was purified from two amphibian species, Xenopus laevis and Pleurodeles waltl. Comparative studies revealed that the two proteins differ by their subunit molecular masses, pI values and V8 digested peptide maps. The effect of zinc, cadmium and copper ions on GAPDH enzymatic activity has been examined in vitro. A time, metal concentration and metal type dependent inhibition was observed for both enzymes. X. laevis and P. waltl GAPDHs exhibit a much greater sensitivity to copper than to cadmium or zinc ions. Different half-lives and differential sensitivity to various metals was observed between the two enzymes with P. waltl GAPDH being remarkably tolerant to cadmium ions compared to the X. laevis enzyme. In order to understand the differential sensitivity of the two enzymes to metals, we produced 3D models of both X. laevis and P. waltl GAPDH structures based upon known 3D structures of GAPDHs from other species. This necessitated, in a first step, to clone a 900 bp cDNA fragment encoding the nearly full-length P. waltl GAPDH. Spatial motif searches on the homology models indicated potential metal binding sites involving cysteine and histidine residues outside the catalytic sites, existing only in either the X. laevis or the P. waltl GAPDH sequences.  相似文献   

18.
Glyceraldehyde-3-phosphate dehydrogenase (d-glyceraldehyde-3-phosphate:nicotinamide adenine dinucleotide oxidoreductase (phosphorylating), EC 1.2.1.12), isolated from rat skeletal muscle undergoes a rapid inactivation upon incubation at 25 °C in the presence of adenine nucleotides. The reaction can be described as a reversible tetramerdimer equilibrium, only the tetrameric form of the enzyme being active in the presence of nucleotides. The standard free energy changes upon dissociation at 25 °C in 0.1 m phosphate buffer pH 7.5 in the presence of saturating concentrations of ATP, ADP, AMP, and ADP-ribose were found to be 6.69, 6.93, 8.31, and 10.5 kcal/mol, respectively. Nucleotide-dependent inactivation does not bring about any alteration of the reactivity of SH groups of the enzyme towards 5,5′-dithiobis(2-nitrobenzoic acid). This is not the case, however, when the enzyme undergoes NaCl-induced cold inactivation, which is accompanied by an increased accessibility of SH groups. ADP and ATP protect the enzyme against cold inactivation in the presence of NaCl and decrease the enhanced reactivity of SH groups. Adenine nucleotide-induced inactivation is prevented in the presence of NAD. The protective effect is noncooperative, the extent of inactivation being dependent upon the amount of active centers free of bound coenzyme. Addition of excess NAD to the inactivated enzyme results in a complete regain of activity. A comparative study made on the rate of reforming enzyme NAD complex (followed spectrophotometrically) and the regain of activity has demonstrated that the former process is markedly more rapid than the latter. The reactivation was observed to follow second-order kinetics, which suggests that the reassociation of the inactive NAD-liganded dimers is the rate-limiting step. The data are consistent with the existence of different conformational transitions responsible for the restoration of the intersubunit contact area, catalytic activity, and thermal stability of the enzyme molecule, respectively.  相似文献   

19.
20.
Kinetics of thermal inactivation of glyceraldehyde-3-phosphate dehydrogenases of mung beans and rabbit muscle have been studied under different pH conditions in the absence and presence of various concentrations of NAD+ and NADH. The data have been discussed with respect to the effect of the coenzymes on the quaternary structure symmetry of the two enzymes and their binding isotherms. Both the (homo-tetrameric) apo-enzymes exhibit biphasic kinetics of thermal inactivation, characteristic of C2 symmetry, at lower pH values and a single exponential decay of enzyme activity, characteristic of D2 symmetry, at higher pHs. In each case, NAD+ has no effect on the biphasic kinetic pattern of thermal inactivation at lower pH values, but NADH brings about a change to single exponential decay. At higher pH values, NADH does not affect the kinetic pattern (single exponential decay) of any enzyme, but NAD+ alters it to biphasic kinetics in each case. The data suggest that NAD+ and NADH have higher affinity for the C2 and D2 symmetry conformation, respectively. With mung beans enzyme, the effect of NAD+ on the two rate constants of biphasic inactivation at pH 7.3 is consistent with a Kdiss equal to 110 microM. The NAD(+)-dependent changes in the kinetic pattern of thermal inactivation of this enzyme at pH 8.6 suggest a positive cooperativity in the coenzyme binding (nH = 3.0). In the binding of NADH to the mung beans enzyme, a weak positive cooperativity is observed at pH 7.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号