首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,127(6):2061-2069
beta-Catenin is involved in the formation of adherens junctions of mammalian epithelia. It interacts with the cell adhesion molecule E- cadherin and also with the tumor suppressor gene product APC, and the Drosophila homologue of beta-catenin, armadillo, mediates morphogenetic signals. We demonstrate here that E-cadherin and APC directly compete for binding to the internal, armadillo-like repeats of beta-catenin; the NH2-terminal domain of beta-catenin mediates the interaction of the alternative E-cadherin and APC complexes to the cytoskeleton by binding to alpha-catenin. Plakoglobin (gamma-catenin), which is structurally related to beta-catenin, mediates identical interactions. We thus show that the APC tumor suppressor gene product forms strikingly similar associations as found in cell junctions and suggest that beta-catenin and plakoglobin are central regulators of cell adhesion, cytoskeletal interaction, and tumor suppression.  相似文献   

2.
In this paper we report that the assembly of interendothelial junctions containing the cell type-specific vascular endothelial cadherin (VE- cadherin or cadherin-5) is a dynamic process which is affected by the functional state of the cells. Immunofluorescence double labeling of endothelial cells (EC) cultures indicated that VE-cadherin, alpha- catenin, and beta-catenin colocalized in areas of cell to cell contact both in sparse and confluent EC monolayers. In contrast, plakoglobin became associated with cell-cell junctions only in tightly confluent cells concomitantly with an increase in its protein and mRNA levels. Furthermore, the amount of plakoglobin coimmunoprecipitated with VE- cadherin, increased in closely packed monolayers. Artificial wounding of confluent EC monolayers resulted in a major reorganization of VE- cadherin, alpha-catenin, beta-catenin, and plakoglobin. All these proteins decreased in intensity at the boundaries of EC migrating into the lesion. In contrast, EC located immediately behind the migrating front retained junctional VE-cadherin, alpha-catenin, and beta-catenin while plakoglobin was absent from these sites. In line with this observation, the amount of plakoglobin coimmunoprecipitated with VE- cadherin decreased in migrating EC. These data suggest that VE- cadherin, alpha-catenin, and beta-catenin are already associated with each other at early stages of intercellular adhesion and become readily organized at nascant cell contacts. Plakoglobin, on the other hand, associates with junctions only when cells approach confluence. When cells migrate, this order is reversed, namely, plakoglobin dissociates first and, then, VE-cadherin, alpha-catenin, and beta-catenin disassemble from the junctions. The late association of plakoglobin with junctions suggests that while VE-cadherin/alpha-catenin/beta- catenin complex can function as an early recognition mechanism between EC, the formation of mature, cytoskeleton-bound junctions requires plakoglobin synthesis and organization.  相似文献   

3.
4.
Plakoglobin is homologous to beta-catenin. Axin, a Wnt signal negative regulator, enhances glycogen synthase kinase (GSK)-3beta-dependent phosphorylation of beta-catenin and stimulates the degradation of beta-catenin. Therefore, we examined the effect of Axin on plakoglobin stability. Axin formed a complex with plakoglobin in COS cells and SW480 cells. Axin directly bound to plakoglobin, and this binding was inhibited by beta-catenin. Axin promoted GSK-3beta-dependent phosphorylation of plakoglobin. Furthermore, overexpression of Axin down-regulated the level of plakoglobin in SW480 cells. These results suggest that Axin regulates the stability of plakoglobin by enhancing its phosphorylation by GSK-3beta and that Axin may act on beta-catenin and plakoglobin in similar manners.  相似文献   

5.
6.
Catenins, Wnt signaling and cancer   总被引:35,自引:0,他引:35  
Recent studies indicate that plakoglobin may have a similar function to that of beta-catenin within the Wnt signaling pathway. beta-catenin is known to be an oncogene in many forms of human cancer, following acquisition of stabilizing mutations in amino terminal sequences. Kolligs(1) and coworkers show, however, that unlike beta-catenin, plakoglobin induces neoplastic transformation of rat epithelial cells in the absence of such stabilizing mutations. Cellular transformation by plakoglobin also appears to be distinct from that of beta-catenin in that it requires activation of the proto-oncogene c-myc. Surprisingly, c-myc is activated more efficiently by plakoglobin than beta-catenin, despite its previous identification as a target of Tcf/beta-catenin.(2) In contrast, a synthetic Tcf reporter gene is activated to a much greater extent by beta-catenin than plakoglobin. Plakoglobin and beta-catenin may therefore have different roles in Wnt signaling and cancer, which reflect their differential effects on target gene activity.  相似文献   

7.
8.
《The Journal of cell biology》1994,125(6):1341-1352
The cadherin/catenin complex plays important roles in cell adhesion, signal transduction, as well as the initiation and maintenance of structural and functional organization of cells and tissues. In the preceding study, we showed that the assembly of the cadherin/catenin complex is temporally regulated, and that novel combinations of catenin and cadherin complexes are formed in both Triton X-100-soluble and - insoluble fractions; we proposed a model in which pools of catenins are important in regulating assembly of E-cadherin/catenin and catenin complexes. Here, we sought to determine the spatial distributions of E- cadherin, alpha-catenin, beta-catenin, and plakoglobin, and whether different complexes of these proteins accumulate at steady state in polarized Madin-Darby canine kidney cells. Protein distributions were visualized by wide field, optical sectioning, and double immunofluorescence microscopy, followed by reconstruction of three- dimensional images. In cells that were extracted with Triton X-100 and then fixed (Triton X-100-insoluble fraction), more E-cadherin was concentrated at the apical junction relative to other areas of the lateral membrane. alpha-Catenin and beta-catenin colocalize with E- cadherin at the apical junctional complex. There is some overlap in the distribution of these proteins in the lateral membrane, but there are also areas where the distributions are distinct. Plakoglobin is excluded from the apical junctional complex, and its distribution in the lateral membrane is different from that of E-cadherin. Cells were also fixed and then permeabilized to reveal the total cellular pool of each protein (Triton X-100-soluble and -insoluble fractions). This analysis showed lateral membrane localization of alpha-catenin, beta- catenin, and plakoglobin, and it also revealed that they are distributed throughout the cell. Chemical cross-linking of proteins and analysis with specific antibodies confirmed the presence at steady state of E-cadherin/catenin complexes containing either beta-catenin or plakoglobin, and catenin complexes devoid of E-cadherin. Complexes containing E-cadherin/beta-catenin and E-cadherin/alpha-catenin are present in both the Triton X-100-soluble and -insoluble fractions, but E-cadherin/plakoglobin complexes are not detected in the Triton X-100- insoluble fraction. Taken together, these results show that different complexes of cadherin and catenins accumulate in fully polarized epithelial cells, and that they distribute to different sites. We suggest that cadherin/catenin and catenin complexes at different sites have specialized roles in establishing and maintaining the structural and functional organization of polarized epithelial cells.  相似文献   

9.
Members of the cadherin family of cell adhesion molecules participate in calcium-dependent cell-cell adhesions that are necessary for the cell sorting events that regulate early developmental processes. Although individual cadherin molecules have been shown to participate in tissue histogenesis, the regulation of function of these receptors in cell differentiation has been more difficult to identify. We have determined that N-cadherin linkage to the cytoskeleton is correlated with lens cell differentiation in vivo. Through the use of a chick embryo lens culture system that mimics differentiation in vivo, we have determined that N-cadherin linkage to the cytoskeleton is altered and lens differentiation is blocked by function-blocking antibodies to N-cadherin. In the presence of the N-cadherin function-blocking antibody, NCD-2, both N-cadherin and filamentous actin are prevented from organizing at the cortical membranes. This correlates with an inhibition of lens morphogenesis and differentiation. These results are paralleled by changes in the expression of the molecular components of the cadherin-catenin complex and their linkage to the actin cytoskeleton. In the presence of NCD-2, expression of N-cadherin, alpha-catenin, and beta-catenin is inhibited and their association with the cytoskeleton blocked. Overall cadherin expression, however, remains unchanged as demonstrated by studies with a pan-cadherin antibody. This is accompanied by an increase in expression of the cadherin cytoskeletal protein plakoglobin. Although the cells have tried to compensate for the loss of N-cadherin by up-regulation of another cadherin(s) and plakoglobin, this is unable to compensate for N-cadherin function. The data strongly suggest that N-cadherin and its associated cytoskeleton play an important role in the differentiation process that leads to the formation of the crystalline lens.  相似文献   

10.
F9 teratocarcinoma cells in which beta-catenin and/or plakoglobin genes are knocked-out were generated and investigated in an effort to define the role of beta-catenin and plakoglobin in cell adhesion. Loss of beta-catenin expression only did not affect cadherin-mediated cell adhesion activity. Loss of both beta-catenin and plakoglobin expression, however, severely affected the strong cell adhesion activity of cadherin. In beta-catenin-deficient cells, the amount of plakoglobin associated with E-cadherin dramatically increased. In beta-catenin/plakoglobin-deficient cells, the level of E-cadherin and alpha-catenin markedly decreased. In these cells, E-cadherin formed large aggregates in cytoplasm and membrane localization of alpha-catenin was barely detected. These data confirmed that beta-catenin or plakoglobin is required for alpha-catenin to form complex with E-cadherin. It was also demonstrated that plakoglobin can compensate for the absence of beta-catenin. Moreover it was suggested that beta-catenin or plakoglobin is required not only for the cell adhesion activity but also for the stable expression and cell surface localization of E-cadherin.  相似文献   

11.
12.
The tyrosine kinase substrate p120cas (CAS), which is structurally similar to the cell adhesion proteins beta-catenin and plakoglobin, was recently shown to associate with the E-cadherin-catenin cell adhesion complex. beta-catenin, plakoglobin, and CAS all have an Arm domain that consists of 10 to 13 repeats of a 42-amino-acid motif originally described in the Drosophila Armadillo protein. To determine if the association of CAS with the cadherin cell adhesion machinery is similar to that of beta-catenin and plakoglobin, we examined the CAS-cadherin-catenin interactions in a number of cell lines and in the yeast two-hybrid system. In the prostate carcinoma cell line PC3, CAS associated normally with cadherin complexes despite the specific absence of alpha-catenin in these cells. However, in the colon carcinoma cell line SW480, which has negligible E-cadherin expression, CAS did not associate with beta-catenin, plakoglobin, or alpha-catenin, suggesting that E-cadherin is the protein which bridges CAS to the rest of the complex. In addition, CAS did not associate with the adenomatous polyposis coli (APC) tumor suppressor protein in any of the cell lines analyzed. Interestingly, expression of the various CAS isoforms was quite heterogeneous in these tumor cell lines, and in the colon carcinoma cell line HCT116, which expresses normal levels of E-cadherin and the catenins, the CAS1 isoforms were completely absent. By using the yeast two-hybrid system, we confirmed the direct interaction between CAS and E-cadherin and determined that CAS Arm repeats 1 to 10 are necessary and sufficient for this interaction. Hence, like beta-catenin and plakoglobin, CAS interacts directly with E-cadherin in vivo; however, unlike beta-catenin and plakoglobin, CAS does not interact with APC or alpha-catenin.  相似文献   

13.
14.
The Wnt-1 proto-oncogene induces the accumulation of beta-catenin and plakoglobin, two related proteins that associate with and functionally modulate the cadherin cell adhesion proteins. Here we have investigated the effects of Wnt-1 expression on the tumor suppressor protein APC, which also associates with catenins. Expression of Wnt-1 in two different cell lines greatly increased the stability of APC-catenin complexes. The steady-state levels of both catenins and APC were elevated by Wnt-1, and the half-lives of both beta-catenin and plakoglobin associated with APC were also markedly increased. The stabilization of catenins by Wnt-1 was primarily the result of a selective increase in the amount of uncomplexed, monomeric beta-catenin and plakoglobin, detected both by affinity precipitation and size-exclusion chromatography of cell extracts. Exogenous expression of beta-catenin was possible in cells already responding to Wnt-1 but not in the parental cells, suggesting that Wnt-1 inhibits an essential regulatory mechanism for beta-catenin turnover. APC has the capacity to oppose this Wnt-1 effect in experiments in which overexpression of the central region of APC significantly reduced the size of the monomeric pool of beta-catenin induced by Wnt-1. Thus, the Wnt-1 signal transduction pathway leads to the accumulation of monomeric catenins and stabilization of catenin complex formation with both APC and cadherins.  相似文献   

15.
16.
MUC1, an integral membrane mucin associated with the metastatic phenotype, is overexpressed by most human carcinoma cells. The MUC1 cytoplasmic tail (CT) is postulated to function in morphogenetic signal transduction via interactions with Grb2/Sos, c-Src, and beta-catenin. We investigated intracellular trafficking of the MUC1 CT, using epitope-tagged constructs that were overexpressed in human pancreatic cancer cell lines S2-013 and Panc-1. The MUC1 CT was detected at the inner cell surface, in the cytosol, and in the nucleus of cells overexpressing MUC1. Fragments of the MUC1 CT were associated with beta-catenin in both cytoplasm and nuclei. Overexpression of MUC1 increased steady state levels of nuclear beta-catenin but decreased nuclear levels of plakoglobin (gamma-catenin). There was no detectable association between plakoglobin and the MUC1 CT. Coimmunoprecipitation experiments revealed that the cytoplasmic and nuclear association of MUC1 CT and beta-catenin was not affected by disruption of Ca2+-dependent intercellular cadherin interactions. These results demonstrate nuclear localization of fragments of MUC1 CT in association with beta-catenin and raise the possibility that overexpression of the MUC1 CT stabilizes beta-catenin and enhances levels of nuclear beta-catenin during disruption of cadherin-mediated cell-cell adhesion.  相似文献   

17.
18.
Three proteins identified by quite different criteria in three different systems, the Drosophila segment polarity gene armadillo, the human desmosomal protein plakoglobin, and the Xenopus E-cadherin-associated protein beta-catenin, share amino acid sequence similarity. These findings raise questions about the relationship among the three molecules and their roles in different cell-cell adhesive junctions. We have found that antibodies against the Drosophila segment polarity gene armadillo cross react with a conserved vertebrate protein. This protein is membrane associated, probably via its interaction with a cadherin-like molecule. This cross-reacting protein is the cadherin-associated protein beta-catenin. Using anti-armadillo and antiplakoglobin antibodies, it was shown that beta-catenin and plakoglobin are distinct molecules, which can coexist in the same cell type. Plakoglobin interacts with the desmosomal glycoprotein desmoglein I, and weakly with E-cadherin. Although beta-catenin interacts tightly with E-cadherin, it does not seem to be associated with either desmoglein I or with isolated desmosomes. Anti-armadillo antibodies have been further used to determine the intracellular localization of beta-catenin, and to examine its tissue distribution. The implications of these results for the structure and function of different cell-cell adhesive junctions are discussed.  相似文献   

19.
p120 was originally identified as a substrate of pp60src and several receptor tyrosine kinases, but its function is not known. Recent studies revealed that this protein shows homology to a group of proteins, beta-catenin/Armadillo and plakoglobin (gamma-catenin), which are associated with the cell adhesion molecules cadherins. In this study, we examined whether p120 is associated with E-cadherin using the human carcinoma cell line HT29, as well as other cell lines, which express both of these proteins. When proteins that copurified with E- cadherin were analyzed, not only alpha-catenin, beta-catenin, and plakoglobin but also p120 were detected. Conversely, immunoprecipitates of p120 contained E-cadherin and all the catenins, although a large subpopulation of p120 was not associated with E-cadherin. Analysis of these immunoprecipitates suggests that 20% or less of the extractable E- cadherin is associated with p120. When p120 immunoprecipitation was performed with cell lysates depleted of E-cadherin, beta-catenin was no longer coprecipitated, and the amount of plakoglobin copurified was greatly reduced. This finding suggests that there are various forms of p120 complexes, including p120/E-cadherin/beta-catenin and p120/E- cadherin/plakoglobin complexes; this association profile contrasts with the mutually exclusive association of beta-catenin and plakoglobin with cadherins. When the COOH-terminal catenin binding site was truncated from E-cadherin, not only beta-catenin but also p120 did not coprecipitate with this mutated E-cadherin. Immunocytological studies showed that p120 colocalized with E-cadherin at cell-cell contact sites, even after non-ionic detergent extraction. Treatment of cells with hepatocyte growth factor/scatter factor altered the level of tyrosine phosphorylation of p120 as well as of beta-catenin and plakoglobin. These results suggest that p120 associates with E-cadherin at its COOH-terminal region, but the mechanism for this association differs from that for the association of beta-catenin and plakoglobin with E-cadherin, and thus, that p120, whose function could be modulated by growth factors, may play a unique role in regulation of the cadherin- catenin adhesion system.  相似文献   

20.
During vertebrate oogenesis, the germ cells and associated somatic cells remain connected by a variety of adhering junctional complexes. However, the molecular composition of these cellular structures is largely unknown. To identify the proteins forming the heterotypic adherens junctions between oocytes and follicle cells in the zebrafish (Danio rerio), the cDNAs encoding alphaE-catenin and plakoglobin were isolated. Using these cDNAs, in combination with the previously isolated beta-catenin cDNA, and antibodies specific for alpha- and beta-catenin, plakoglobin, and N- and E-cadherin, we found differences in catenin and plakoglobin gene expression during oogenesis. The immunolocalization of these plaque proteins, as well as of cadherins, in the ovarian follicle indicated an enrichment of alpha- and beta-catenin and of E-cadherin-like protein(s) in the oocyte cortex, notably at sites of oocyte-follicle cell contacts, suggesting the presence of hitherto unknown heterotypic adherens junctions between these cells. By contrast, plakoglobin and N-cadherin localization was restricted to cell-cell contacts in the follicle cell layer. During oocyte maturation, mRNAs for alphaE- and beta-catenin and plakoglobin accumulated, and all three plaque-forming proteins were stored in unfertilized eggs, either in complexed forms with cadherins or as free cytoplasmic pools. These findings suggest possible roles of these junctional proteins during early embryogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号