首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During migration, birds undergo alternating periods of fasting and re-feeding that are associated with dynamic changes in body mass (m(b)) and in organ size, including that of the digestive tract. After arrival at a migratory stopover site, following a long flight, a bird must restore the tissues of its digestive tract before it can refuel. In the present study we examined how the availability of dietary protein influences refueling of migrating blackcaps (Sylvia atricapilla) during a migratory stopover. We tested the following predictions in blackcaps deprived of food and water for 1-2 days to induce stopover behavior: (1) birds provided with a low-protein diet will gain m(b), lean mass and fat mass, and increase in pectoral muscle size slower than do birds fed a high-protein diet; (2) since stopover time is shorter in spring, birds will gain m(b) and build up fat tissue and lean tissue faster than in autumn; and (3) if low dietary protein limits a bird's ability to gain m(b) and fat reserves, then birds that do not obtain enough protein will initiate migratory restlessness (Zugunruhe) earlier than will birds with adequate dietary protein. These predictions were tested by providing captured migrating blackcaps with semisynthetic isocaloric diets differing only in their protein content. Each day, we measured m(b), and food intake; also lean mass and fat mass were measured using dual energy X-ray absorptiometry. In addition, we monitored nocturnal activity with a video recording system. In both spring and autumn, birds fed diets containing either 3 or 20% protein increased in m(b), lean mass and fat mass at similar rates during the experiment. However, the group receiving 3% protein ate more than did the group receiving 20% protein. In support of our predictions, m(b), lean mass, fat mass, and intake of food all were higher in spring than in autumn. We also found that in spring all birds had higher levels of migratory restlessness, but birds fed 3% protein were less active at night than were birds fed 20% protein, possibly an adaptation conserving energy and protein. We conclude that protein requirements of migrating blackcaps during stopover are lower than expected, and that birds can compensate for low dietary protein by behavioral responses, i.e. hyperphagia and decreased migratory restlessness, that ensure rapid refueling.  相似文献   

2.
Bar-tailed godwits migrate from West African wintering sites to breeding areas in northern Russia with only one stopover. We compared hematocrit (Hct), blood hemoglobin concentration (Hb), and mean cell hemoglobin concentration (MCHb; a measure of the relative proportion of Hb in the cellular blood fraction) between arriving godwits lured to land 60 km short of the stopover site and godwits during subsequent refueling. The Hct and Hb of arriving godwits was low when compared to that of refueling birds. On the stopover site, Hct and Hb correlated positively with size-corrected body mass. In addition, Hb and MCHb reached peak levels in the last days of stopover. We explored the possibility of regenerative anemia in arriving godwits by comparing the fraction of reticulocytes (young red blood cells) between arriving and refueling birds. No differences were found. Therefore, we suggest that the increase in Hct, Hb, and MCHb during refueling is not in response to a severe anemic state at arrival. Rather, we suggest that the increase in blood parameters may anticipate the increased aerobic requirements of impending migratory flight and possibly satisfy heightened oxygen demands of the larger body mass of fattened birds. The Hct increase on the stopover site may also serve to buffer the red blood cell population against possible red blood cell breakdown during long-distance flight.  相似文献   

3.
Bats and birds must balance time and energy budgets during migration. Migrating bats face similar physiological challenges to birds, but nocturnality creates special challenges for bats, such as a conflict between travelling and refueling, which many birds avoid by feeding in daylight and flying at night. As endothermic animals, bats and birds alike must expend substantial amounts of energy to maintain high body temperatures. For migratory birds refueling at stopovers, remaining euthermic during inactive periods reduces the net refuelling rate, thereby prolonging stopover duration and delaying subsequent movement. We hypothesized that bats could mitigate similar ambient-temperature dependent costs by using a torpor-assisted migration strategy. We studied silver-haired bats Lasionycteris noctivagans during autumn migration using a combination of respirometry and temperature-sensitive radiotelemetry to estimate energy costs incurred under ambient temperature conditions, and the energy that bats saved by using torpor during daytime roosting periods. All bats, regardless of sex, age, or body condition used torpor at stopover and saved up to 91% of the energy they would have expended to remain euthermic. Furthermore, bats modulated use of torpor depending on ambient temperature. By adjusting the time spent torpid, bats achieved a rate of energy expenditure independent of the ambient temperature encountered at stopover. By lowering body temperature during inactive periods, fuel stores are spared, reducing the need for refuelling. Optimal migration models consider trade-offs between time and energy. Heterothermy provides a physiological strategy that allows bats to conserve energy without paying a time penalty as they migrate. Although uncommon, some avian lineages are known to use heterothermy, and current theoretical models of migration may not be appropriate for these groups. We propose that thermoregulatory strategies should be an important consideration of future migration studies of both bats and birds.  相似文献   

4.
Summary The effect of body mass and fat reserves on the choice of the stopover place and on the stopover period was investigated in 3 species of passerine birds migrating through the Sahara in Egypt. Birds grounded in an oasis with food and water were more than 10% lighter than those from a desert stopover place which offered shade only. Stopover period was in general one day except for the light portion of oasis birds which stopped for up to three weeks during which they regained fat. A calculation of the maximum range which can be covered with the available fat depots revealed that nearly all birds from the desert stopover place should be able to cross the desert whereas about 60% of the oasis birds should not. An intermittant migratory strategy for the desert crossing is proposed with flight during the night and stopover during the day, even without drinking and feeding.  相似文献   

5.
The specific roles of corticosterone in promotion of avian migration remain unclear even though this glucocorticosteroid is elevated in many migrating bird species. In general, glucocorticosteroids promote metabolic homeostasis and may elicit effects on feeding and locomotion. Because the migratory stages of refueling and flight are characterized by distinct behaviors and physiology, the determination of corticosterone levels during each stage should help identify potential processes in which corticosterone is involved. We measured baseline levels of corticosterone in bar-tailed godwits (Limosa lapponica) during two distinct stages of migration: (1) immediately after arrival at a false stopover site just short of the Wadden Sea and (2) throughout the subsequent 4-wk refueling period on the Wadden Sea. Plasma corticosterone was higher in arriving than in refueling birds. In addition, corticosterone increased with size-corrected body mass during the refueling phase, suggesting that corticosterone rises as birds prepare to reinitiate flight. Therefore, elevated corticosterone appears associated with migratory flight and may participate in processes characterizing this stage. We also performed a capture stress protocol in all birds and found that corticosterone increased in both arriving and refueling godwits. Therefore, the normal course of migration may be typified by corticosterone concentrations that are lower than those associated with stressful and life-threatening episodes.  相似文献   

6.
A limitation of standardized mist netting for monitoring migration is caused by the lack of knowledge about the relationship between trapped birds and birds flying aloft. Earlier studies related nocturnal radar counts with trapping data of the following day. In this study, we compared for the first time data gathered simultaneously by radar and mist netting, separately for diurnal and nocturnal migration. Trapping numbers were strongly correlated with migratory intensities measured by radar (r>0.6). A multiple regression analysis, including wind speed and wind direction explained 61% of variation in the number of captures. During the night, and particularly with favourable winds, birds flew at higher altitudes and hence escaped the nets to a higher proportion. The number of nocturnal migrants trapped during daytime was well correlated with migratory intensities observed by radar in the preceding night. The diurnal time patterns, however, revealed fundamental differences between trapping counts and radar observations. This was mainly due to increasing and decreasing flight altitudes in the course of the night, and by the limitations of the radar technique that underestimates migratory intensities during the day when birds aggregate in flocks. In relation to the migratory intensity recorded by radar, diurnal migrants are trapped in a much higher proportion than nocturnal migrants. Finally, our results confirm that trapping data from a site hardly used for stopover are well suited to represent the ongoing migration during the day and night.  相似文献   

7.
We investigated the flexibility of body composition in relation to seasonally variable demands for endurance flight capacity and hyperphagia in a migratory shorebird. Migrating western sandpipers were sampled in spring and fall while refueling at a north temperate stopover and were compared with nonmigrating birds captured at a tropical wintering area in Panama. Sandpipers weighed 25% more at stopover, and nearly 40% of migratory mass increase consisted of lean body components. Most organs and flight muscles were 10%-100% larger during migration, and the greatest relative size increases occurred in the digestive system (including liver). Birds preparing to initiate spring migration from Panama deposited only fat, suggesting that changes in lean body components take place after migration has begun, possibly through training effects. Sex did not influence body composition. Juveniles making their first southward migration were similar to adults in structural size and body mass but had substantially enlarged alimentary tracts. Sandpipers appeared to deposit lean mass during stopover in fall but not in spring. The dramatic enlargement of the digestive system in this small species that makes short flights and fuels frequently contrasts with the reduction of digestive components in larger species that fuel only once or twice by making one or two very long flights to their destination.  相似文献   

8.
While it is clear that many migratory behaviors are shared across taxa, generalizable models that predict the distribution and abundance of migrating taxa at the landscape scale are rare. In migratory landbirds, ephemeral concentrations of refueling birds indicate that individual behaviors sometimes produce large epiphenomena in particular geographic locations. Identifying landscape factors that predict the distribution and abundance of birds during migratory stopover will both improve our understanding of the migratory process and assist in broad, regionally relevant conservation. In this study we used autumnal passerine stopover data from a five‐year period and eleven stopover sites across coastal Maine, USA, to test four broad hypotheses of migrant distribution and abundance that have been supported in other regions: a) the community characteristics of the pool of potential migrants, b) a site's local geography, c) landscape composition and configuration measured at different spatial scales, and d) interactions between these factors. Our final model revealed that birds concentrate at ‘habitat islands’, sites that possess a disproportionate percentage of the vegetated habitat in the 4‐km surrounding landscape. The strength of this pattern, however, was inversely proportional to a species' remaining migratory distance. Our results corroborate several studies that emphasize the importance of land cover composition at finer spatial scales (< 80 km2) for predicting the stopover distribution and abundances of migratory birds. This suggests that different migrants likely assess stopover sites with similar mechanisms along their migratory route, and these commonalities may be broadly applied to identify stopover locations of conservation importance across the continent.  相似文献   

9.
Estimates of refuelling rates in migrating waders are best based on intra‐seasonal recaptures of individually marked birds. This method, however, has methodological problems associated with capture effects and difficulties in attaining sufficient sample sizes. An alternative method had been proposed whereby refuelling rates are approximated by the body mass increment from the slope of the regression between body masses of all birds caught at a site and date. We investigated the appropriateness of this indicator with a simulation study in non‐synchronized migratory species (i.e. arrivals and departures of individuals at the stopover site are not synchronized). Simulation results indicated that the mass increment across the population may be used as an approximation of refuelling rate only in populations with low turnover rates (percentage of birds arriving at/departing from stopover site per day <2%) and ideally with constant numbers of staging birds. The mass increment of non‐synchronized populations with moderate or high turnover rates (higher than 5%) depends mainly on body masses of arriving birds and is not indicative of the individual rate of refuelling. The results of the simulation study were confirmed with empirical data gathered from Wood Sandpiper Tringa glareola and Common Snipe Gallinago gallinago during their autumn migration at a stopover site in Poland. The population mass increment methods considerably underestimated refuelling rate obtained from the recapture‐based approach of individual birds in both species. As a consequence, we suggest that population mass increment should not be used as an indicator of refuelling rates in non‐synchronized stopover populations of migrating waders.  相似文献   

10.
Radar observations of the diurnal timing of bird migration in the Sahara Desert are presented for autumn migration. Study sites were on a transect along the north-south migratory direction. Three groups of birds migrating either during day, evening or night in the northern part of the Western desert in Egypt were identified. The maximum of day and night groups occurred later the further south the study sites were. Based on the distance between sites and the timing of peak migration, birds were flying at an estimated ground speed of about 20 m/s. The maximum of the evening group was at about 21:00 h at all sites. The three groups were classified according to three different strategies of migration across the Mediterranean Sea and the Sahara Desert: (1) the day group of birds performed a non-stop flight across the sea and at least the northern part of the desert; [2] the night group performed an intermittent migratory strategy with stopover at the coast of Egypt to continue migration the next evening; (3) the evening group birds were also intermittent migratory fliers, but they stopped somewhere in the desert after a continuous flight across the sea and part of the desert. About 20% of all migrants are involved in non-stop migration and 80% in intermittent migration with stopover at the coast (70%) or with stopover in the desert (10%). It is argued that any species of small passerine has the option to use any of the three strategies.  相似文献   

11.
We investigated the effects of temperature on photoperiodic induction of the phenologies linked with migration (body fattening and premigratory night-time restlessness, Zugunruhe) and reproduction (testicular maturation) in the migratory blackheaded bunting. Birds were exposed for four weeks to near-threshold photoperiods required to induce testicular growth (11.5 L:12.5 D and 12 L:12 D) or for 18 weeks to a long photoperiod (13 L:11 D) at 22°C or 27°C (low) and 35°C or 40°C (high) temperatures. A significant body fattening and half-maximal testicular growth occurred in birds under the 12 L, but not under the 11.5 L photoperiod. Further, one of six birds in both temperature groups on 11.5 L, and four and two of six birds, respectively, in low- and high-temperature groups on 12 L showed the Zugunruhe. Buntings on 13 L in both temperature groups showed complete growth-regression cycles in body fattening, Zugunruhe and testis maturation. In birds on 13 L, high temperature attenuated activity levels, delayed onset of Zugunruhe by about 12 days, reduced body fattening and slowed testicular maturation. The effect of temperature seems to be on the rate of photoperiodic induction rather than on the critical day length. It is suggested that a change in temperature could alter the timing of the development of phenologies linked with seasonal migration and reproduction in migratory songbirds.  相似文献   

12.
长距离迁徙鸟类对应于能量积累状态的取食行为调整   总被引:5,自引:0,他引:5  
迁徙鸟类能够预计到迁徙过程中对能量需求的增加和迁徙途中获得能量的不确定性。最佳迁徙理论指出:迁徙停留期的一系列决策受到体内能量状态、取食机会和迁徙时间的影响。利用刚完成春季跨越墨西哥湾迁徙的鸫类,我们研究了取食行为、体内能量状态和能量积累速度的相互关系。我们用雾网捕获了停留的鸫,然后给每只鸟进行了环志和称重,并估测了表皮下积累的脂肪。为了检测体内能量积累大小对取食行为的影响,我们把在野外观察到的鸟分成肥、瘦两组。当一天里被捕获鸟的平均体重低于相关种的瘦体重时,这一天被观察到的取食鸟被归到瘦组,反之就属于肥组。我们同时对一部分鸟用有色环进行了标记,以便能在野外观察到它们时能准确地知道每一只鸟的初始能量积累状态。在春天完成跨越墨西哥湾迁徙以后的鸫大约有50%在到达停留地时就已经消耗了所有的表皮下脂肪。与肥组鸟相比,瘦组的个体在停留期扩展了取食方法和取食基底,增加了取食速度。与此相关的是,瘦鸟表现出体重积累更多、速度更快。我们的数据表明迁徙鸟在到达迁徙中途停留地时的能量状态会影响到它们停留期间的取食行为和继续迁徙时的生理机能,从而影响停留期的长短和在迁徙途中停留与否的决定[动物学报51(1):12—23,2005]。  相似文献   

13.
During migration, a number of bird species rely on stopover sites for resting and feeding before and after crossing ecological barriers such as deserts or seas. The duration of a stopover depends on the combined effects of environmental factors, endogenous programmes and physiological conditions. Previous studies indicated that lean birds prolong their refuelling stopover compared with fat birds; however, the quantitative relationship between physiological conditions and stopover behaviour has not been studied yet. Here, we tested in a large sample of free-living birds of three European passerines (whinchats, Saxicola rubetra, garden warblers, Sylvia borin and whitethroats, Sylvia communis) whether the amount of migratory restlessness (Zugunruhe) shown at a stopover site depends on physiological conditions. An integrated measure of condition based on body mass, amount of subcutaneous fat and thickness of pectoral muscles strongly predicted the intensity of Zugunruhe shown in recording cages in the night following capture. These results provide novel and robust quantitative evidence in support of the hypothesis that the amount of energy reserves plays a major role in determining the stopover duration in migratory birds.  相似文献   

14.
In migrating birds body mass change during stopover is often used to evaluate the quality of a stopover site. Because such body mass changes are difficult to survey in migrating birds various methods were developed to allow the analysis of larger sample sizes. In this article we present patterns of repeated body mass measurements of individual birds and the commonly used method of plotting body mass over time of day of birds being trapped only once. We repeatedly measured body mass of 89 northern wheatears Oenanthe oenanthe, when stopping over at a small island in the North Sea. A balance beneath bowls offering mealworms ad libitum was used to weigh their body mass several times per day. From these repeated body mass measurements we have generated a general model of daily mass gain patterns and nocturnal mass loss. Daily body mass changes followed in general an asymptotic curve progression with highest gain rates in the morning hours. During night birds lost about 5% of the evening body mass irrespectively of local wind force, temperature, night length or precipitation. By plotting first traps by time of day no such pattern in body mass increase was evident. Even in a simulated situation with repeatedly measured birds increasing their body mass, no such body mass increase could be shown when plotting one randomly chosen measurement of each bird per day. This “first‐traps‐by‐time‐of‐day‐method” depends highly on sample size, overall mass increase and the mass variation between individuals and will produce a traceable body mass increase only under certain circumstances.  相似文献   

15.
Plasma metabolite profiling offers a potential means to assess stopover refueling performance of migratory birds from a single capture. However, this method has not previously been validated where site quality has been determined independently using analysis of capture data. We captured and blood sampled six passerine bird species refueling at known high-quality (BASE) and low-quality (TIP) sites at Long Point, Ontario, Canada. Plasma triglyceride, an indicator of fat deposition, was higher at the BASE in three early-season species: the hermit thrush, the American robin, and the white-throated sparrow. Plasma B-OH-butyrate, an indicator of fasting and lipid utilization, was lower at the BASE in the same three species. Plasma glycerol was lower at the BASE in American robins, and plasma phospholipid did not differ between sites. No metabolite suggested better conditions at the TIP in any species. Regression of size-corrected mass on time of day also indicated better refueling performance at the BASE in some species, but metabolite profiling was generally more sensitive to site differences. The relationship between plasma glycerol and triglyceride was U-shaped, indicating high glycerol production during both lipolysis (as was previously known) and rapid fat deposition. Our results confirm the validity of metabolite profiling to assess stopover habitat quality and individual performance in refueling migrants.  相似文献   

16.
Nocturnal migration of Reed Warblers Acrocephalus scirpaceus was studied by trapping with 'high nets' on the Courish Spit (Eastern Baltic) during spring 1998–2000. In spring, Reed Warblers left the stopover site between 45 and 240 min after sunset (median 84 min), although 85% of birds took off between 45 and 120 min after sunset. Birds did not arrive until the fifth hour after sunset; 67% of birds ended their nocturnal flights in the penultimate hour before sunrise, i.e. at dawn. At the moment of migratory departure, the average Reed Warbler body mass was 12.79 ± 0.66 g ( n  = 60). Average body mass of birds ending migratory flight was 11.69 ± 0.67 g ( n  = 18). The difference was highly significant. However, more than half of the birds completed migratory flights with a considerable fuel load, and some even had energy stores sufficient for a migratory flight on the next night. The spring migratory strategy of Reed Warblers over Central and Northern Europe probably includes a succession of short migratory flights (4–6 h) during several subsequent nights with 1-day stopovers.  相似文献   

17.
The conservation of migratory songbirds in China faces challenges similar to those in other parts of the world such as Europe and North America. Migratory songbirds have a complex life history and are associated with large spatial scale. Events that occur during migration play a vital role in determining population status. Little is known about the stopover behavior of migratory songbirds in China during their passage, including stopover duration, energetic condition (e.g., the amount of fat stores), and the habitat of these birds. We investigated migration timing, stopover duration, change of energetic condition and sex-related variations among Red-flanked Bush Robins (Tarsiger cyanurus) at a stopover site in Northeast China. A total of 1 751 Red-flanked Bush Robins were captured in the fall of 2002, with further 684 captured in the spring of 2003. The body mass of the fall birds was higher than that of the spring ones. The condition index (i.e., body mass adjusted for body size) was lowest among spring females. Birds were more likely to stay longer in fall than in spring. We detected a positive relationship between the time of initial capture and condition index regardless of season or sex, suggesting that the birds were able to replenish energy stores. The net daily mass gain was the highest among males in the fall (3% of body mass). The net daily mass gain would sustain a flight of 0.6 hours for females and 3.1 hours for males in the fall. The stopover biology of Red-flanked Bush Robins is similar to that of some migratory songbirds in Europe and North America. For example, the spring passage time and fat store variation between the sexes concurs with the hypothesis that males are selected to arrive at their breeding grounds as early as food resources or climatic conditions are adequate in the spring. Further research on stopover ecology is urgently required in China to achieve a better understanding of migratory behavior and ensure the conservation of these migratory songbirds.  相似文献   

18.
The phases of the annual cycle for migratory species are inextricably linked. Yet, less than five percent of ecological studies examine seasonal interactions. In this study, we utilized stable hydrogen isotopes to geographically link individual black‐and‐white warblers (Mniotilta varia) captured during spring migration with breeding destinations to understand a migrant's stopover strategy in the context of other phases of the annual cycle. We found that stopover strategy is not only a function of a bird's current energetic state, but also the distance remaining to breeding destination and a bird's time‐schedule, which has previously been linked to habitat conditions experienced in the preceding phase of the annual cycle. Birds in close proximity to their breeding destination accumulate additional energy reserves prior to arrival on the breeding grounds, as reflected by higher migratory condition upon arrival, higher refueling rates measured via blood plasma metabolites, and longer stopover durations compared to birds migrating to breeding destinations farther from the stopover site. However, late birds near their breeding destination were more likely to depart on the day of arrival (i.e., transients), and among birds that stopped over at the site, the average duration of stopover was almost half the time of early conspecifics, suggesting late birds are trying to catch‐up with the overall time‐schedule of migration for optimal arrival time on the breeding grounds. In contrast, birds with long distances remaining to breeding destinations were more likely to depart on the day of arrival and primarily used stopover to rest before quickly resuming migration, adopting similar strategies regardless of a bird's time‐schedule. Our study demonstrates that migrants adjust their en route strategies in relation to their time‐schedule and distance remaining to their breeding destination, highlighting that strategies of migration should be examined in the context of other phases of the annual cycle.  相似文献   

19.
Many migratory bird species fly mainly during the night (nocturnal migrants), others during daytime (diurnal migrants) and still others during both night and day. Need to forage during the day, atmospheric structure, predator avoidance and orientation conditions have been proposed as explanations for the widespread occurrence of nocturnal migration. However, the general principles that determine the basic nocturnal-diurnal variation in flight habits are poorly known. In the present study optimal timing of migratory flights, giving the minimum total duration of the migratory journey, is evaluated in a schematic way in relation to ecological conditions for energy gain in foraging and for energy costs in flight. There exists a strong and fundamental advantage of flying by night because foraging time is maximized and energy deposition can take place on days immediately after and prior to the nocturnal flights. The increase in migration speed by nocturnal compared with diurnal migration will be largest for birds with low flight costs and high energy deposition rates. Diurnal migration will be optimal if it is associated with efficient energy gain immediately after a migratory flight because suitable stopover/foraging places have been located during the flight or if energy losses during flight are substantially reduced by thermal soaring and/or by fly-and-forage migration. A strategy of combined diurnal and nocturnal migration may be optimal when birds migrate across regions with relatively poor conditions for energy deposition (not only severe but also soft barriers). Predictions about variable timing of migratory flights depending on changing foraging and environmental conditions along the migration route may be tested for individual birds by analysing satellite tracking results with respect to daily travel routines in different regions. Documenting and understanding the adaptive variability in daily travel schedules among migrating animals constitute a fascinating challenge for future research.  相似文献   

20.
候鸟春季迁徙时间与其能否顺利完成迁徙过程,以及对繁殖地的成功选择和繁殖成效密切相关,通过对大天鹅越冬地和停歇地的春季迁徙时间选择原因及其影响因素进行分析,有助于深入理解候鸟春季迁徙时间策略和栖息地保护状况。2015年2月和12月,在河南三门峡湿地捕捉了60只越冬大天鹅并佩戴卫星跟踪器,获取了详细的大天鹅在越冬地和停歇地的春季迁徙时间等信息,并进一步分析了春季迁徙时间与气候因子的相关性。结果表明,大天鹅主要在夜间22:00-0:00和0:00-1:59迁离越冬地。大天鹅迁离越冬地的日期与温度呈显著性正相关,迁离时多选择顺风且风速较小的天气。大天鹅迁离越冬地后主要是在夜间飞行,而迁离停歇地后主要是在日间飞行。越冬地的温度越高,越有利于植物的生长,大天鹅可以快速地积累能量,提前开始春季迁徙。野外调查表明,内蒙古黄河中上游作为迁徙的重要停歇地,春季两岸捕鱼、农耕和放牧等为活动较多,因此大天鹅多选择在夜间觅食补充能量,在日间迁离。最后,针对黄河流域大天鹅栖息地的保护现状,提出了禁止经济开发项目、建立保护区和开展宣传教育等保护建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号