首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 986 毫秒
1.
The presence of a Zn2+-dependent acid p-nitrophenyl phosphatase (EC 3.1.3.2) in bovine liver was described. The enzyme was purified to apparent homogeneity and migrates as a single band during electrophoresis on polyacrylamide gel. The enzyme requires Zn2+ ions for catalytic activity, other bivalent cations have little or no effect. The enzyme, of Mr 118,000, optimum pH 6-6.2 and pI 7.4-7.5, was inhibited by EDTA, tartrate, adenine and ATP, but not by fluoride. The common phosphate esters are poor substrates for the enzyme, which hydrolyses preferentially p-nitrophenyl phosphate and o-carboxyphenyl phosphate. The Zn2+-dependent acid p-nitrophenyl phosphatase of bovine liver was different from the high-Mr acid phosphatases previously detected in mammalian tissues.  相似文献   

2.
Midgut glands of abalone Haliotis discus contained two acid phosphatases [orthophosphoric-monoester phosphohydrolase (acid optimum), EC 3.1.3.2] separable by phosphocellulose column chromatography. They were designated as acid phosphatases I and II in order of elution and were purified 99- and 290-fold, respectively. Purified acid phosphatase II was nearly homogeneous as judged by polyacrylamide gel electrophoresis. The substrate specificity of acid phosphatase I was narrow, whereas that of acid phosphatase II was broad. Good substrates for acid phosphatase I included p-nitrophenyl phosphate, phosphoenolpyruvate, inorganic pyrophosphate, and nucleoside di- and triphosphates. The acid phosphatases did not require any metal ion for maximum activity and were inhibited by Zn2+, Cu2+ and Hg2+. Fluoride and arsenate were potent inhibitors of both enzymes. The pH optima of acid phosphatases I and II were 5.9 and 5.5, respectively. The molecular weights of acid phosphatases I and II were estimated to be 28,000 and 100,000, respectively, by gel filtration on Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that acid phosphatase II consists of two identical subunits.  相似文献   

3.
Low molecular weight phosphotyrosyl protein phosphatases of human placenta and human red cell were purified and sequenced by a combination of Edman degradation and tandem mass spectrometry. Screening of a human placental lambda gt11 cDNA library yielded overlapping cDNA clones coding for two distinct human cytoplasmic low molecular weight phosphotyrosyl protein phosphatases (HCPTPs). The two longest clones, designated HCPTP1-1 and HCPTP2-1, were found to have identical nucleotide sequences, with the exception of a 108-base pair segment in the middle of the open reading frame. Polymerase chain reaction studies with human genomic DNA suggest that the difference between HCPTP1-1 and HCPTP2-1 does not result from alternative RNA splicing. Studies with a human chromosome 2-specific library confirmed that these sequences are located on chromosome 2, which is known to be the location of red cell acid phosphatase locus ACP1. The coding sequences of HCPTP1-1 and HCPTP2-1 were placed downstream from a bacteriophage T7 promoter and the proteins were expressed in Escherichia coli. The resulting recombinant enzymes (designated HCPTP-A and HCPTP-B, respectively) showed molecular weights of 18,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and both of them exhibited immunoreactivity with antisera raised against authentic human placental and bovine heart enzymes. The expressed proteins were highly active towards the phosphatase substrates p-nitrophenyl phosphate, beta-naphthyl phosphate, and O-phospho-L-tyrosine, but not alpha-naphthyl phosphate, threonine phosphate, or O-phospho-L-serine. HCPTP-A and -B possessed effectively identical amino acid compositions, immunoreactivities, inhibition by formaldehyde, and kinetic properties when compared with two human red cell acid phosphatase isoenzymes. It is concluded that HCPTP-A and -B are the fast and slow forms of red cell acid phosphatase, respectively, and that this enzyme is not unique to the red cell but is instead expressed in all human tissues.  相似文献   

4.
The phosphotyrosyl [Tyr(P)]-immunoglobulin G (IgG) phosphatase activity in the extracts of bovine heart, bovine brain, human kidney, and rabbit liver can be separated by DEAE-cellulose at neutral pH into two fractions. The unbound fraction exhibits a higher activity at acidic than neutral pH while the reverse is true for the bound fraction. Of all tissues examined, the Tyr(P)-IgG phosphatase activity in the unbound fraction measured at pH 5.0 is higher than that in the bound fraction measured at pH 7.2. The acid Tyr(P)-IgG phosphatase activity has been extensively purified from bovine heart. It copurified with an acid phosphatase activity (p-nitrophenyl phosphate (PNPP) as a substrate) throughout the purification procedure. These two activities coelute from various ion-exchange and gel filtration chromatographies and comigrate on polyacrylamide gel electrophoresis, indicating that they reside on the same protein molecule. The phosphatase has a Mr = 15,000 by gel filtration and exhibits an optimum between pH 5.0 and 6.0 when either Tyr(P)-IgG-casein or PNPP is the substrate. It is highly specific for Tyr(P)-protein with little activities toward phosphoseryl [Ser(P)]- or phosphothreonyl [Thr(P)]-protein. The enzyme activities toward Tyr(P)-casein and PNPP are strongly inhibited by microM molybdate and vanadate but insensitive to inhibition by L(+)-tartrate, NaF, or Zn2+. The molecular and catalytic properties of the acid Tyr(P)-protein phosphatase purified from bovine heart are very similar to those of the low-molecular-weight acid phosphatases of Mr = 14,000 previously identified and purified from the cytosolic fraction of human liver, placenta, and other animal tissues.  相似文献   

5.
Soybean acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) was completely separated from phytase (EC 3.1.3.8) isolated from cotyledons of germinating seeds and purified to homogeneity. A four-step purification regimen consisting of ammonium sulfate fractionation, and ion-exchange, affinity, and chromatofocusing gel chromatographies was employed to achieve a homogeneous preparation. Acid phosphatase activity appeared as a major band of the three forms of acid phosphatase identified on native gels. The purified enzyme had a molecular weight of 53,000 when electrophoresed on 8% sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a molecular weight of 53,000 from its mobility in a Fracto-gel TSK HW-50F gel permeation column. The molar extinction coefficient of the enzyme at 278 nm was estimated to be 4.2 X 10(4) M-1 cm-1. The isoelectric point of the protein, as revealed by chromatofocusing, was about 6.7. The optimal pH for activity, like other plant acid phosphatases, was 5.0. While the enzyme failed to accommodate phytate as a substrate, the enzyme did exhibit a broad substrate selectivity. The affinity of the enzyme for p-nitrophenyl phosphate was high (Km = 70 microM), and activity was competitively inhibited by orthophosphate (Ki = 280 microM). The estimated catalytic turnover number (Kcat) of the enzyme for p-nitrophenyl phosphate was about 430 per second. Although the purified enzyme was stable at 0 degrees C and exhibited maximum catalytic activity at 60 degrees C, thermal inactivation studies indicated that the enzyme lost 100% activity after treatment at 68 degrees C for 10 min.  相似文献   

6.
Low molecular weight acid phosphatase from bovine brain was purified to homogeneity using affinity chromatography on p-aminobenzylphosphonic acid-agarose to obtain the enzyme with both high specific activity (110 mumol min-1 mg-1 measured at pH 5.5 and 37 degrees C with p-nitrophenyl phosphate as substrate) and good yields. The enzyme was characterized with respect to molecular weight, amino acid composition, pH optimum, Km and Vmax in varying substrates, and to the Ki of varying inhibitors. Furthermore, transphosphorylation to glycerol was demonstrated by measuring the released p-nitrophenol/Pi concentration ratio during the initial phase of the catalyzed reaction. The enzyme was inactivated by iodoacetate and 1,2-cycloexanedione. Inorganic phosphate, a competitive inhibitor, protected the enzyme from being inactivated by the above compounds, demonstrating the involvement of both cysteine(s) and arginine(s) at the active site of the enzyme. Furthermore, the strong inhibition exerted by pyridoxal 5'-phosphate and the low inhibitory capacity possessed by the pyridoxal 5'-phosphate analogues pyridoxamine 5'-phosphate and pyridoxal, indicate that at least one lysine residue is present at the active site.  相似文献   

7.
Two forms of tartrate-sensitive acid phosphatases (EC 3.1.3.2) were purified from rabbit kidney cortex by a multiple-column-chromatography method. The basic form constituted 90% of the enzyme and migrated as a single band of protein on polyacrylamide-gel electrophoresis. The proteins contaminating the acidic form did not exceed 5% of the total protein. The specific activity towards p-nitrophenyl phosphate was 12 mumol/min per mg for the basic form and 0.7 mumol/min per mg for the acidic form. The basic form of the enzyme differs from the acidic form in its heat-stability, Km values, inhibition rates by tartrate and fluoride and substrate specificities. Relative to p-nitrophenyl phosphate hydrolysis rate, the acidic form hydrolysed a variety of physiological monophosphate esters, whereas the basic form hydrolysed only CMP and phosphoenolpyruvate. Bacterial neuraminidases had no effect on the activity and mobility of the acidic form on polyacrylamide-gel electrophoresis. Both forms have the same molecular weight (101000 +/- 4000) and are probably composed of two identical subunits. The question whether the two forms of the enzyme are different proteins or whether one is a modified form of the other is discussed.  相似文献   

8.
1. Specific proteases which inactivate the apo-proteins of many pyridoxal enzymes were found in skeletal muscle, liver and small intestine of rats. The protease from these three organs were purified and their properties were compared. 2. The purified proteases from liver and skeletal muscle appeared homogeneous on acrylamide gel electrophoresis. Two different proteases were separated from small intestine. A homogeneous, crystalline enzyme was obtained from the muscle layer while enzyme from the mucosa was partially purified. 3. They showed substrate specificity for pyridoxal enzymes. Their pH optima were in an alkaline region. They showed activity with the substrate of chymotrypsin, N-acetyl-L-tyrosine ethyl ester, but not with that of trypsin, p-toluenesulfonyl-L-arginine ethyl ester. They were inhibited by pyridoxal phosphate or pyridoxamine phosphate and seryl residues were involved in their active center. 4. The four enzymes differed in the following characters: (a) molecular weights; (b) patterns of elution from a CM-Sephadex column; (c) rates of inactivation of substrate enzymes; (d) rates of cleavage of N-acetyl-L-tyrosine ethyl ester; (e) reactivities with antiserum against the enzyme from the muscle layer of small intestine; (f) specific activities. 5. The amino acid composition and effect of chemical modifications of the crystalline enzyme from the muscle layer of small intestine were examined to elucidate its active sites and mode of action. Serine and histidine residues were found to be essential for protease activity. A tyrosine residue was also necessary for activity. Modifications of its sulfhydryl group, amino residues and carboxyl group had no effect on its activity.  相似文献   

9.
Abstract— Kinetic experiments with 4-aminobutyrate-2-ketoglutarate transaminase (GABA-T), partially purified from human brain tissue, supported a Bi Bi Ping-Pong type of enzyme mechanism in which the enzyme oscillates between forms bound to pyridoxal phosphate and pyridoxamine phosphate. Extrapolated K m values were 0.31 m m for γ-aminobutyrate, 0.16 m m for α-ketoglutarate, and 3.8 μ m for pyridoxal phosphate. Very similar kinetic parameters were observed with rat brain enzyme. Apparent molecular weight of human GABA-T by gel filtration was 70,000 ± 3000. Electrofucusing experiments indicated a single ionic form with isoelectric pH = 5.7. Enzyme activity was inhibited by Tris, halides, cadmium and cupric ions, and known GABA-T inhibitors.
GABA-transaminating enzymes isolated from human kidney and liver were found to be similar to the brain enzyme with respect to substrate affinities, cofactor requirements, isoelectric pH values, molecular weights, and response to inhibitors.  相似文献   

10.
Sinorhizobium meliloti has two nonspecific periplasmic acid phosphatases. The NapD enzyme has been previously described, and a second acid phosphatase, NapE, is described in this report. NapE was partially purified from an S. meliloti napD mutant and characterized with respect to molecular mass and substrate range. As predicted from SDS-PAGE analysis, the subunit molecular mass of NapE is approximately 35.8 kDa and gel filtration experiments estimated the native molecular mass to be approximately 70 kDa, indicating that the active enzyme is a homodimer. NapE demonstrated significant activity with p-nitrophenyl phosphate, phenyl phosphate, and alpha-naphthyl-phosphate. The pH optimum was between 4.5 and 5.0. The gene encoding NapE was also sequenced and the inferred amino acid sequence from the predicted ORF was found to be 60% identical and 75% similar to that encoded by napD. An S. meliloti napE mutant was constructed and assessed for symbiotic competence. This mutant did not differ from the wild-type parent strain in nodulation and symbiotic efficiency.  相似文献   

11.
Human liver acid phosphatases.   总被引:2,自引:0,他引:2  
Human liver contains three chromatographically distinct forms of non-specific acid phosphatase (EC 3.1.3.2). Acid phosphatases I, II and III have molecular weights of greater than 200 000, of 107 000, and of 13 400, respectively. Following partial purification, isoenzyme II was obtained as a single activity band, as assessed by activity staining with p-nitrophenyl phosphate and alpha-naphthyl phosphate on polyacrylamide gels run at several pH values. With 50mM p-nitrophenyl phosphate as a substrate, enzymes II and III exhibit plateaus of activity over the pH range 3 - 5 and 3.5 - 6, respectively.Acid phosphatase II is not significantly inhibited by 0.5% formaldehyde. The activity of human liver acid phosphatase II and of human prostatic acid phosphatase towards several substrates is compared. The liver enzyme, is marked contrast to the prostatic enzyme, does not hydrolyze O-phosphoryl choline.  相似文献   

12.
A metal-ion-independent, nonspecific phosphoprotein phosphatase (Mr = 35000) which represents the major phosphorylase phosphatase activity in bovine adrenal cortex has been purified to apparent homogeneity. An alkaline phosphatase activity (p-nitrophenyl phosphate as a substrate) of the same molecular weight, which requires both a metal ion (Mg2+ greater than Mn2+ greater than Co2+) and a sulfhydryl compound for activity, has been found to co-purify with the phosphoprotein phosphatase throughout the purification procedures. Characterization of the phosphoprotein and the alkaline phosphatase activities with respect to their catalytic properties, substrate and metal ion specificities, relationship with large molecular forms of the enzymes and responses to various effectors has been carried out. The results indicate that the phosphoprotein phosphatase can be converted by pyrophosphoryl compounds (e.g. PPi and ATP) to a metal-ion-dependent form which, subsequently, can be reactivated by Co2+ greater than Mn2+ but not by Mg2+ or Zn2+. The results also indicate that, although the phosphoprotein and the alkaline phosphatase activities are closely associated, they exhibit distinct physical and catalytic properties. Discussions concerning whether these two activities represent two different forms of the same protein or two different yet very similar polypeptide chains have been presented.  相似文献   

13.
1. Acid and alkaline phosphatase activities were studied in rat and dog aortic muscle using p-nitrophenyl phosphate (p-NPP) as the substrate. Alkaline phosphatase activity was quite comparable to acid phosphatase activity in rat aortic microsomes as well as further purified plasma membranes, but considerably lower than acid phosphatase activity in dog aortic membranes. 2. Subcellular distribution of acid and alkaline phosphatase activities in these vascular muscles indicated that alkaline phosphatases and a large portion of acid phosphatase activities were primarily associated with plasma membranes and the distribution of acid phosphatase showed little resemblance to that of N-acetyl-beta-glucosaminidase, a lysosomal marker enzyme. 3. The rat aortic plasmalemmal acid and alkaline phosphatase activities responded very differently to magnesium, fluoride, vanadate and EDTA. The alkaline phosphatase was more susceptible to heat inactivation than acid phosphatase. 4. These results suggest that these two phosphatases are likely to be two different enzymes in the smooth muscle plasma membranes. The implication of the present findings is discussed in relation to the alteration of these phosphatases in hypertensive vascular diseases.  相似文献   

14.
An acid phosphatase species which was activated by Fe2+ was determined to be partially soluble but mainly particulate in rat spleen. The particulate enzyme could be extracted into 1 M KCl. This enzyme bound to Cibacron Blue-immobilized Sepharose (Blue-Sepharose) and was desorbed by 2 M KCl with a good yield, while the other acid phosphatases in rat spleen did not adsorb on Blue-Sepharose. The enzymes eluted on Blue-Sepharose chromatography of both the soluble and particulate fractions were electrophoretically identical. The enzyme hydrolyzed aryl monophosphates, phosphoproteins, and nucleoside di- and triphosphates. The activity for the three kinds of substrate was similarly activated by Fe2+, ascorbic acid and cysteine, and inhibited by molybdate, Cu2+ and F-. Cibacron Blue inhibited the enzyme competitively with respect to a substrate, p-nitrophenyl phosphate, but kinetic analysis suggested that more than one dye molecule binds to the enzyme. The Blue-Sepharose technique could be applied not only to quantitative separation of acid phosphatases similar to the spleen enzyme from bone and epidermis of rat, but also to that of a tartrate-resistant acid phosphatase from human spleen with Gaucher's disease.  相似文献   

15.
Platelet protein phosphatases and their endogenous substrates   总被引:1,自引:0,他引:1  
One p-nitrophenyl phosphate phosphatase (A) and five protein phosphatases (B, C, D, E, F) with neutral pH optimum (7.0-7.5) were partially purified from human platelets. Protein phosphatases were activated by Mn2+ (B-F), Mg2+ (D, F) or Ca2+ (F) but all of them had substantial activity even in the presence of EDTA. The activity of phosphatase D was predominant when assayed in the presence of EDTA. Phosphatase F was significantly enhanced by Ca2+ and calmodulin and therefore considered to be calcineurin. Without strict substrate specificity, all protein phosphatases (B-F) dephosphorylated phosphoproteins like actin binding protein, 47k protein and myosin light chain. Thus, it was suggested that protein phosphatases might play a role in the down regulation of platelet function not only in the resting but agonist-stimulated platelets.  相似文献   

16.
A survey of Salmonella typhimurium enzymes possessing phosphatase or phosphodiesterase activity was made using several different growth conditions. These studies revealed the presence of three major enzymes, all of which were subsequently purified: a cyclic 2' ,3'-nucleotide phosphodiesterase (EC 3.1.4.d), an acid hexose phosphatase (EC 3.1.3.2), and a nonspecific acid phosphatase (EC 3.1.3.2). A fourth enzyme hydrolyzed bis-(p-nitrophenyl)phosphate but none of the other substrates tested. No evidence was found for the existence of an alkaline phosphatase (EC 3.1.3.1) or a specific 5'-nucleotidase (EC 3.1.3.5) in S. typhimurium LT2. All three phosphatases could be measured efficiently in intact cells, which suggested a periplasmic location; however, they were not readily released by osmotic shock procedures. The nonspecific acid phosphatase, which was purified to apparent homogeneity, yielded a single polypeptide band on both sodium dodecyl sulfate and acidic urea gel electrophoretic systems.  相似文献   

17.
An acid phosphatase activity that displayed phosphotyrosyl-protein phosphatase has been purified from bovine cortical bone matrix to apparent homogeneity. The overall yield of the enzyme activity was greater than 25%, and overall purification was approximately 2000-fold with a specific activity of 8.15 mumol of p-nitrophenyl phosphate hydrolyzed per min/mg of protein at pH 5.5 and 37 degrees C. The purified enzyme was judged to be purified based on its appearance as a single protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (silver staining technique). The enzyme could be classified as a band 5-type tartrate-resistant acid phosphatase isoenzyme. The apparent molecular weight of this enzyme activity was determined to be 34,600 by gel filtration and 32,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence of reducing agent, indicating that the active enzyme is a single polypeptide chain. Kinetic evaluations revealed that the acid phosphatase activity appeared to catalyze its reaction by a pseudo Uni Bi hydrolytic two-step transfer reaction mechanism and was competitively inhibited by transition state analogs of Pi. The enzyme activity was also sensitive to reducing agents and several divalent metal ions. Substrate specificity evaluation showed that this purified bovine skeletal acid phosphatase was capable of hydrolyzing nucleotide tri- and diphosphates, phosphotyrosine, and phosphotyrosyl histones, but not nucleotide monophosphates, phosphoserine, phosphothreonine, phosphoseryl histones, or low molecular weight phosphoryl esters. Further examination of the phosphotyrosyl-protein phosphatase activity indicated that the optimal pH at a fixed substrate concentration (50 nM phosphohistones) for this activity was 7.0. Kinetic analysis of the phosphotyrosyl-protein phosphatase activity indicated that the purified enzyme had an apparent Vmax of approximately 60 nmol of [32P]phosphate hydrolyzed from [32P]phosphotyrosyl histones per min/mg of protein at pH 7.0 and an apparent Km for phosphotyrosyl proteins of approximately 450 nM phosphate group. In summary, the results of these studies represent the first purification of a skeletal acid phosphatase to apparent homogeneity. Our observation that this purified bovine bone matrix acid phosphatase was able to dephosphorylate phosphotyrosyl proteins at neutral pH is consistent with our suggestion that this enzyme may function as a phosphotyrosyl-protein phosphatase in vivo.  相似文献   

18.
Monomeric alkaline phosphatase of Vibrio cholerae.   总被引:3,自引:1,他引:2       下载免费PDF全文
N K Roy  R K Ghosh    J Das 《Journal of bacteriology》1982,150(3):1033-1039
Alkaline phosphatase has been purified to homogeneity from two strains of Vibrio cholerae. The enzymes from both strains are single polypeptides of molecular weight 60,000. Both of the enzymes have pH optima around 8.0 and can act on a variety of organic phosphate esters, glucose-1-phosphate being the best substrate. The enzymes are unable to hydrolyze ATP and AMP. Although they have identical Km values, the two enzymes differ significantly in Vmax with p-nitrophenyl phosphate as substrate. The enzymes from the two strains also differ in their sensitivity to EDTA, Pi, and metal ions and activities of the apoenzymes. Ca2+ reactivated the apoenzymes most.  相似文献   

19.
Properties and function of phosphatases from vascular smooth muscle   总被引:1,自引:0,他引:1  
Myosin light chain phosphatase (MLCP) activity was present in extracts from a wide variety of mammalian tissues. A partially purified preparation of bovine aortic MLCP also showed activity against phosphorylase a and p-nitrophenyl phosphate (PNP). Whether these three activities are ascribable to a single multifunctional phosphatase or to three distinct phosphatases is unknown. The three phosphatase activities coelute during gel filtration both before and after treatment with ethanol showing exclusion volumes corresponding to 240,000 and 35,000 daltons, respectively. This indicates that the enzyme is dissociable into a smaller catalytic subunit. The widespread occurrence of MLCP activity and the close parallel among MLCP, phosphorylase a phosphatase, and PNP phosphatase activities suggest that the enzyme (or enzymes) may participate in physiological processes in addition to dephosphorylation of phosphorylated myosin light chains.  相似文献   

20.
Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号