首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. The activities of hydroxymethylglutaryl-CoA synthase and lyase in rat liver were found to be two- to 15-fold greater than those reported by other authors under similar conditions. 2. When expressed on the basis of body weight, no appreciable differences were found between the activities of hydroxymethylglutaryl-CoA synthase in whole homogenates of livers from normal and starved rats. The synthase activity increased by 70% and 140% in livers of alloxan-diabetic rats and rats fed on a high-fat diet respectively. 3. Hydroxymethylglutaryl-CoA lyase activity showed no significant increases in starvation or alloxan-diabetes, but a 40% increase was found in fat-fed rats. 4. Less than 12% of the activities of both enzymes were found in the cytoplasmic fraction of normal liver. The cytoplasmic activity doubled in alloxan-diabetes and starvation; on feeding with a high-fat diet the increase, though significant, was less marked. 6. The intracellular distribution of glutamate dehydrogenase indicated that the changes in the cytoplasmic activities observed were not due to leakage from the mitochondria. 7. Feeding with a normal or high-fat diet after 48hr. starvation caused within 24hr. a decrease in the cytoplasmic activity of hydroxymethylglutaryl-CoA synthase to values lower than those found in rats fed on a corresponding diet for a longer period of time. 8. Acetoacetyl-CoA deacylase activity in liver was about 20% of that of hydroxymethylglutaryl-CoA synthase and was primarily located in the cytoplasm. Starvation or alloxan-diabetes did not alter the acetoacetyl-CoA deacylase activity. 9. It is concluded that variations in the concentrations of enzymes involved in acetoacetate synthesis play no major role in the regulation of ketone-body formation in starvation and alloxan-diabetes. The changes in the cytoplasmic activities of hydroxymethylglutaryl-CoA synthase and lyase suggest that acetoacetate synthesis can occur in the cytoplasm. This may play a role in the disposal of surplus acetyl-CoA arising in the cytoplasm when lipogenesis is inhibited.  相似文献   

2.
After Wistar male rats had been fed on a diet containing 0.25% of ethyl p-chlorophenoxyisobutyrate (CPIB) for 28 days, changes in the enzyme activities and centrifugal behavior of rat liver peroxisomes were investigated. (1) Compared with control rats fed on the basal diet, the catalase [EC 1.11.1.6] activity of rat livers after the administration of CPIB increased about 2.5-fold, while urate oxidase [EC 1.7.3.3] activity did not change significantly. Though D-amino acid oxidase [EC 1.4.3.3] activity markedly decreased to approximately one-sixth of the control, the activity of L-alpha-hydroxy acid oxidase [EC 1.1.3.15], a flavin enzyme like D-amino acid oxidase, was not affected significnatly after the administration of CPIB. (2) When the hepatic cells of CPIB-treated rats were fractionated by differential centrifugation, most of the increase of catalase activity appeared in the supernatant fraction. A decrease in the hepatic D-amino acid oxidase activity of CPIB-treated rats was observed in all the fractions. As for the subcellular distribution of the particle-bound enzymes, the specific activities of both catalase and urate oxidase of CPIB-treated rat livers were higher in the light mitochondrial fraction than in other fractions. (3) Sedimentation patterns in a sucrose density gradient did not show any difference between normal peroxisomers, and CPIB-treated ones. (4) In the case of CPIB-treated rats, studies of their sedimentation patterns by Ficoll density gradient centrifugation showed two main particulate peaks containing both catalase and urate oxidase, although only a single peak was observed in the case of control rats.  相似文献   

3.
RNA polymerase 1 activity and nucleolar volume have been reported to increase in hepatocytes from rats fed a protein-free diet. Phosphorylation in vitro of a 110-kDa protein was enhanced in nuclei and nucleoli from livers of rats fed a protein-free diet. In nuclear extracts the 110-kDa protein in heat-treated nuclei was much more phosphorylated than from control liver. In contrast, casein kinase activity in the nuclear extract from control liver was comparable to that from livers of rats fed a protein-free diet. Nuclear extracts from control rat liver and livers of rats fed a protein-free diet were fractionated by DEAE-cellulose column chromatography. Casein kinase II (NII) eluted at around 0.17 M NaCl scarcely phosphorylates the 110-kDa protein. Chromatography of the nuclear extract from livers of rats fed a protein-free diet, but not from control liver, yielded fractions which eluted at 0.21-0.25 M NaCl and predominantly phosphorylated the 110-kDa protein. The phosphorylation of 110-kDa protein was not appreciably affected by a heparin concentration of 5 micrograms/ml, which completely inhibited casein kinase II. In addition, phosphorylation of the 110-kDa protein in liver nucleoli from rats fed a protein-free diet showed a lower sensitivity to heparin than that in control rat liver nucleoli. These results suggest that enhanced phosphorylation of the nuclear 110-kDa protein in livers from rats fed a protein-free diet is due to the induction of a 110-kDa protein kinase distinct from casein kinase II.  相似文献   

4.
The present study was undertaken to investigate the potentiation by p-chlorophenoxyisobutyrate (CPIB) of the antilipolytic effect of insulin in isolated adipocytes from rats fed a (1) sucrose diet, (2) glycerol-lard diet, or (3) chow diet. CPIB supplementation in the diet consistently resulted in decreased serum triglyceride levels in rats from the three dietary groups. The catecholamine-stimulated glycerol release was significantly depressed to a greater extent by insulin when the fat cells were obtained from rats given CPIB compared to those without drug treatment. The enhanced insulin sensitivity was, however, not accompanied by any changes in insulin binding to adipocytes. These two observations were found in cell preparations from rats fed any one of the diets, although differences among dietary groups could be detected. In an in vitro experiment, epinephrine-stimulated glycerol release was progressively inhibited by increasing concentrations of CPIB in the incubation medium. However, the antilipolytic response to an optimal concentration of insulin (100 muU/ml) was augmented in the presence of CPIB. Thus, it seems that CPIB can potentiate the action of insulin in inhibiting mobilization of free fatty acid from the adipose tissue, and the coordinated effect of both antilipolytic agents is important in lowering serum triglyceride concentration. The mechanism by which CPIB facilitates the effect of insulin is discussed.  相似文献   

5.
1. Data are provided that indicate that the rat brain acetoacetyl-CoA deacylase is almost exclusively mitochondrial. Developmental studies show that this enzyme more than doubles its activity during suckling (0--21 days) and then maintains this activity in adults (approx. 1.1 units/g wet wt.). 2. Kinetic studies (on the acetoacetyl-CoA deacylase) in a purified brain mitochondrial preparation give a Vmax. of 47 nmol/min per mg of protein, and a Km for acetoacetyl-CoA of 5.2 micron and are compatible with substrate inhibition by acetoacetyl-CoA above concentrations of 47 micron. 3. The total brain 3-hydroxy-3-methyl-glutaryl-CoA synthase remains constant in the developing and adult rat brain (approx. 1.2 units/g wet wt.). This enzyme is located in both the mitochondrial and cytosolic fractions. During suckling (0--21 days) the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase represents approx. one-third of the total, but this increases markedly to about 60% of the total in the adult. The cytosolic enzyme correspondingly falls to approx. 40% of the total. 4. The role of the acetoacetyl-CoA deacylase in providing cytosolic acetoacetate for biosynthetic activities in the developing brain is discussed.  相似文献   

6.
Rats were injected with control-gamma-globulins or anti-liverlipase. The anti-liverlipase treatment resulted in a 69-78% inhibition of the salt-resistant lipase activity (liver lipase) in the liver. De novo cholesterol synthesis was significantly higher in slices of livers from anti-liverlipase treated rats than from control-gamma-globulin injected rats. The anti-liverlipase treatment also affected all plasma lipoprotein fractions. If the rats had been fed a cholestyramine containing diet no effect of anti-liverlipase on cholesterol synthesis was found. In these rats the effects on plasma lipoprotein fractions were more pronounced than in the control fed rats.  相似文献   

7.
Capacities for urea synthesis and amino acid patterns in the perfused livers isolated from rats fed low and high-protein diets were compared. Urea formation with amjonium chlorode as the nitrogen source in perfused livers isolated from rats fed on a 70% casein diet was rapid and the efficiency of conversion of ammonia to urea was 97.9%. However, that in livers isolated from rats fed on a 5% casein diet was much slower and the efficiency of conversion of ammonia to urea was only 36.1%. The ratios of the rate of urea formation from ammonium chloride to activity of ornithine transcarbamylase [EC 2.1.3.3.] in the perfused livers of rats fed on 5 and 70% casein diets were calculated. The ratio of the former condition was much lower than that of the latter. The ratios reached nearly the same level by the addition of ornithine and N-acetylglutamate, the addition of which to the perfusate caused marked elevation of the ratios in both cases. In the perfused livers from rats fed on a 5% casein diet a considerable portion of the ammonia added to the perfusate was fixed into an amino ro an amide group of amino acids such as alamin, aspartate, and glutamine. On the other hand, in the perfused livers from rats fed on a 70% casein diet most of the ammonia added was converted to urea. The regulation of urea synthesis and the relation between anabolism and catabolism of amino acids in rat livers subjected to different dietary conditions were compared.  相似文献   

8.
1. The activities of acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA synthase and lyase and acetoacetyl-CoA deacylase were measured in homogenates of samples of liver, rumen epithelium (long papillae), kidney and lactating mammary gland derived from slaughtered cows. 2. The activities of the four enzymes in bovine liver were similar to the activities previously reported for the corresponding enzymes in rat liver. 3. Acetoacetyl-CoA thiolase and hydroxymethylglutaryl-CoA synthase and lyase were present in rumen epithelium. The activities of the enzymes were all lower on a wet weight basis than in liver. Only very slight deacylase activity was detected. 4. Kidney contained acetoacetyl-CoA thiolase, hydroxymethylglutaryl-CoA lyase and acetoacetyl-CoA deacylase, but only trace amounts of hydroxymethylglutaryl-CoA synthase. 5. Mammary gland contained acetoacetyl-CoA thiolase and some hydroxymethylglutaryl-CoA lyase, but virtually no hydroxymethylglutaryl-CoA synthase or acetoacetyl-CoA deacylase. 6. Since physiologically significant ketogenesis probably occurs solely via the hydroxymethylglutaryl-CoA pathway, it is evident that, of the four tissues examined, such ketogenesis must be restricted to the liver and the rumen epithelium. 7. All the enzymes except hydroxymethylglutaryl-CoA lyase were also assayed in the four tissues derived from cows suffering from bovine lactational ketosis. Ketosis did not cause a statistically significant change in the activity of any of the enzymes measured. 8. Hepatic hydroxymethylglutaryl-CoA synthase and lyase were found to be associated mainly with the particulate fraction, as in the rat. A considerably greater proportion of these enzymes was found to be present in the cytoplasmic fraction from rumen epithelium, although it was not excluded that this was due to mitochondrial damage during homogenization. 9. Appreciable hydroxymethylglutaryl-CoA synthase was also present in epithelium from the dorsal region of the rumen, from the reticulum and from the omasum, but not from the abomasum.  相似文献   

9.
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

10.
Effect of feeding defatted millet (Sorghum vulgarie) flour at 5, 10 and 14.5% protein levels respectively for six weeks has been studied on rat liver mitochondrial, microsomal and supernatant fractions total lipids, cholesterol, triglycerides, total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine. The results have been compared with rats fed casein at 10% level for the same period. The metabolism of liver subcellular fractions lipids of millet diet and casein diet fed rats has been studied by the incorporation of acetate-1-14C and . A significant increase in mitochondrial triglycerides of rats fed millet diet at 5 and 10% protein level, in microsomes of rats fed millet diet at 5, 10 and 15% protein levels and in supernatant fractions of rats fed millet diet at 5 and 15% protein levels was observed. A significant increase in total cholesterol in mitochondria and microsomes and a significant decrease in supernatant fraction of rats fed millet diet at 10% protein level was observed. A significant increase in mitochondrial total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine in rats fed millet diet at 10% protein level and a decrease in these in rats fed millet diet at 5 per cent protein level was observed. In microsomes total phospholipids were increased in rats millet diet at 10% protein level and phosphatidyl choline was increased in rats fed millet diet at 15% protein level. Total phospholipids, phosphatidyl choline and phosphatidyl ethanolamine were significantly reduced in the supernatant fraction of rats fed millet at 10% protein level.

Incorporation of acetate-1-14C into nonsaponifiable fraction of mitochondria, microsomes and supernatant fractions of rats fed millet diet at 5 and 15 % protein levels was significantly greater, and in saponifiable fractions of the above subcellular fractions was greater in rats fed millet diet at 5 per cent protein level. The specific activity (counts/min/mg) of free cholesterol in mitochondria, microsomes and supernatant fractions of millet diet fed rats was significantly greater, whereas the specific activity of triglycerides was not significantly different from the controls. The acetate-1-14C specific activity of phosphatidyl choline and phosphatidyl ethanolamine was significantly greater in all the above subcellular fractions of millet diet fed rats (except of phosphatidyl choline in rats fed millet diet at 5 % protein level). The specific activities of phosphatidyl choline were significantly greater in mitochondria of rats fed millet diet at 5 % protein level and of phosphatidyl choline and phosphatidyl ethanolamine in microsomes and supernatant fractions of rats fed millet diet at 5 and 15% protein levels. The specific activities of phosphatidyl choline were significantly decreased in mitochondria and microsomes of rats fed millet diet at 10% protein level. The total acetate-1-14C activities (counts/min/g equivalent wet liver) of free and esterified cholesterol triglycerides, phosphatidyl choline and phosphatidyl ethanolamine showed that their synthesis from acetate-1-14C was either enhanced in millet diet fed rats or was comparable to the controls. The total activity of (counts/min/g equivalent wet liver) into phosphatidyl choline and phosphatidyl ethanolamine showed that their synthesis was decreased in microsomes of rats fed millet diet at 10% protein level, increased in rats fed millet diet at 5 and 15% protein levels.  相似文献   

11.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

12.
Rats were fed by stomach tube with a single dose of glucose, sorbitol, fructose, glycerol or ethanol of equivalent energy contents or with 0.15 M-NaCl. They were killed 6 h later and the relative rates of phosphatidate deacylation and dephosphorylation measured in the microsomal and supernatant fractions of the livers. Treatment with sorbitol, fructose, glycerol and ethanol increased phosphohydrolase activities in the microsomal and supernatant fractions. The only significant change in deacylase activity was an increase in the microsomal fraction produced by ethanol. It is proposed that hepatic triacylglycerol synthesis is partly controlled by the balance between phosphatidate phosphohydrolase and phospholipase A-type activities.  相似文献   

13.
The liver cells of intact male rats given ethyl-α-p-chlorophenoxyisobutyrate (CPIB) characteristically show a marked increase in microbodies and in catalase activity, while those of intact female rats do not. In castrated males given estradiol benzoate and CPIB the increase in catalase activity and microbody proliferation is abolished, while in castrated females given testosterone propionate and CPIB the livers show a marked increase in microbodies and in catalase activity. No sex difference in microbody and catalase response is apparent in fetal and neonatal rats. Both sexes show a sharp rise in catalase activity on the day of birth, with a rapid decline at 5 days after birth. Thyroidectomy abolishes the hypolipidemic effect of CPIB in rats, but microbody proliferation and increase in catalase activity persists in thyroidectomized male rats, indicating that microbody proliferation can be independent of hypolipidemia. Adrenalectomy does not alter appreciably the microbody-catalase response to CPIB. These experiments demonstrate that (1) in adult rats, hepatic microbody proliferation is dependent to a significant degree upon male sex hormone but is largely independent of thyroid or adrenal gland hormones; (2) hepatic microbody proliferation is independent of the hypolipidemic effect of CPIB; (3) displacement of thyroxine from serum protein may not be sufficient cause for stimulation of microbody formation.  相似文献   

14.
Rats were fed a protein-free diet. After 9 weeks the animals' weight decreased to about 50% of the original. The liver weight was also decreased to about half, and most interestingly the average size of the liver cells was reduced about 50%. Liver protein synthesis was approximately 75% of controls tested in an "in vitro" system. Polysomes were found disaggregated in livers of rats on protein-free diet. This was not due to a reduced content or translatability of mRNA. eIF-2 partially purified from livers of rats on protein-free diet had the same activity as that from controls. The decrease of ATP, ADP and AMP in livers of rats on protein-free diet (19%, 42% and 58% respectively) may be responsible for the decreased rate of initiation of protein synthesis. Proteolysis in liver cytosol from rats on protein-free diet was 50% higher than in controls mostly due to lysosomal proteolysis.  相似文献   

15.
Groups of rats bearing Morris minimal deviation hepatoma 7288CTC were fed a fat-free diet supplemented with either 0.5% safflower oil (diet A), 15% safflower oil or free acids (diets Band C), or 15% safflower oil or free safflower fatty acids (diet D) for 4 weeks. A group of normal rats was also fed diet D. Triglycerides, cholesteryl esters, phosphatidylcholines, and phosphatidylethanolamines isolated from livers and hepatomas of animals on each diet were analyzed quantitatively for positional isomers in the cis- and trans-octadecenoate fractions. When sufficient samples could be obtained, the cis- and trans-hexadecenoate fractions were also analyzed. Plasma from normal rats on diet D was analyzed in the same manner. The octadecenoate fractions of all hepatoma and liver lipid classes from animals fed diets A, B, and C were greater than 95% the cis isomers. Trans isomers accounted for approximately 15, 30, 50, and 70% of the octadecenoate fractions isolated from liver triglycerides, cholesteryl esters, phosphatidylcholines, and phosphatidylethanolamines, respectively, of animals fed diet D. In contrast, all hepatoma lipid classes from animals on diet D contained the same approximate percentage of trans isomers (15 to 20%). Oleic and vaccenic acids were the major positional cis-octadecenoate isomers of all liver and hepatoma lipid classes from animals fed diets A, B, and C. The ratios of oleic to vaccenic, unaffected by diets A, B, and C, differed for each lipid class in liver, but the ratios were similar for the two hepatoma neutral lipid classes and for the two phospholipid classes. The cis-octadecenoate fractions from all liver and hepatoma lipid classes of animals fed diet D consisted predominantly of the delta9, delta11, and delta12 isomers. The cis delta10 isomer, which was a major isomer of the diet, was almost excluded from liver, hepatoma, and plasma lipids. The positional isomers of the trans-octadecenoate fractions from liver and hepatoma triglycerides and cholesteryl esters exhibited the same approximate distribution as the trans fatty acids of diet D. In contrast, the 10-trans-octadecenoate, like 10-cis-octadecenoate, was almost excluded from the phospholipids of liver and plasma. Unlike liver, the hepatoma phospholipids contained 10-trans-octadecenoate at approximately half the percentage of neutral lipids. Because diet D contained no hexadecenoic fatty acids, the occurrence of trans-hexadecenoate isomers in liver and plasma lipids indicated a chain shortening process. Predominance of the 8-trans-hexadecenoate isomer indicated a preference of the 10-trans-octadecenoate isomer for chain shortening.  相似文献   

16.
The cytochrome P-450 content of nuclear membranes isolated from the livers of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks, was only about 20% of the values in control rats fed the same diet devoid of AAF. This effect was apparent after only 1 week of AAF treatment and persisted in nuclear membranes from isolated hyperplastic nodules (HPN) generated by 4 cycles of interrupted AAF-feeding. The microsomal cytochrome P-450 content, on the other hand, remained at control levels after 1 week of AAF treatment, and it was only slightly decreased after 3 weeks. In contrast, microsomes from HPN generated by prolonged AAF treatment had markedly decreased amounts of cytochrome P-450. The AAF treatment also caused changes in cholesterol epoxide hydrolase activity, which paralleled those observed for cytochrome P-450 content. Nuclear membranes from livers of rats fed AAF for 3 weeks, and from isolated HPN, had only 30-50% of the cholesterol epoxide hydrolase activity present in controls, whereas the microsomal enzyme activity remained at control levels after 3 weeks of AAF feeding but was 50% depressed in microsomes from HPN. The selective loss of cytochrome P-450 and of cholesterol epoxide hydrolase in hepatic nuclear membrane, but not in microsomes, of rats fed AAF for 3 weeks suggests independent control for these enzymes in these two membrane fractions. Cytochrome P-450 plays a role both in the activation of AAF (N-hydroxylation) as well as in its detoxification (ring hydroxylation) whereas cholesterol epoxide hydrolase initiates the detoxification of cholesterol epoxide. Therefore, our findings suggest the hypothesis that AAF treatment causes an early loss, at the surface of the nucleus, of the last line of defense for detoxification of transforming or promoting metabolites generated by microsomal activation of natural substances such as cholesterol and of xenobiotics such as AAF.  相似文献   

17.
Our previous work in perfused rat livers has demonstrated that 4-hydroxynonenal (HNE) is catabolized predominantly via β oxidation. Therefore, we hypothesized that perturbations in β oxidation, such as diet-altered fatty acid oxidation activity, could lead to changes in HNE levels. To test our hypothesis, we (i) developed a simple and sensitive GC/MS method combined with mass isotopomer analysis to measure HNE and HNE analogs, 4-oxononenal (ONE) and 1,4-dihydroxynonene (DHN), and (ii) investigated the effects of four diets (standard, low-fat, ketogenic, and high-fat mix) on HNE, ONE, and DHN concentrations in rat livers. Our results showed that livers from rats fed the ketogenic diet or high-fat mix diet had high ω-6 polyunsaturated fatty acid concentrations and markers of oxidative stress. However, high concentrations of HNE (1.6 ± 0.5 nmol/g) and ONE (0.9 ± 0.2 nmol/g) were found only in livers from rats fed the high-fat mix diet. Livers from rats fed the ketogenic diet had low HNE (0.8 ± 0.1 nmol/g) and ONE (0.4 ± 0.07 nmol/g), similar to rats fed the standard diet. A possible explanation is that the predominant pathway of HNE catabolism (i.e., β oxidation) is activated in the liver by the ketogenic diet. This is consistent with a 10-fold decrease in malonyl-CoA in livers from rats fed a ketogenic diet compared to a standard diet. The accelerated catabolism of HNE lowers HNE and HNE analog concentrations in livers from rats fed the ketogenic diet. On the other hand, rats fed the high-fat mix diet had high rates of lipid synthesis and low rates of fatty acid oxidation, resulting in the slowing down of the catabolic disposal of HNE and HNE analogs. Thus, decreased HNE catabolism from a high-fat mix diet induces high concentrations of HNE and HNE analogs. The results of this work suggest a potential causal relationship to metabolic syndrome induced by Western diets (i.e., high-fat mix), as well as the effects of a ketogenic diet on the catabolism of lipid peroxidation products in liver.  相似文献   

18.
In order to compare the effects of different sources of dietary protein on the fatty acid composition of phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI), cholesteryl esters and triacylglycerols, male rats were fed for a 4-week period on cholesterol-free, or cholesterol-containing, diets based on casein, or soybean protein and olive oil. The most conspicuous difference observed was the occurrence of significantly higher levels of 5,8,11-eicosatrienoic acid, 20:3 (n - 9), in the different lipid classes of casein-fed, compared with soybean protein-fed, animals. In the PI fraction of livers from the groups of rats fed casein diet, this fatty acid amounted to between 9.9 and 13.3% by weight of the total fatty acids. Phospholipids from livers of casein-fed rats contained increased levels of oleic acid, 18:1 (n - 9) (in PC and PE) and reduced levels of stearic acid (18:0). Moreover, in this group of rats PI contained a reduced level of arachidonic acid, 20:4 (n - 6). A casein-related decrease in the linoleic acid, 18:2 (n - 6), content of PC and PE was observed only in the rats fed on cholesterol-free diet. Effects on the fatty acid composition were also observed in the triacyglycerol and cholesteryl ester fractions, in which the rats fed casein diet showed higher levels of palmitoleic acid, 16:1 (n - 7) (cholesterol-supplemented diet) and lower values for linoleic acid, than the soybean protein-fed rats.  相似文献   

19.
Young rats (100 g) were fed either a myo-inositol-deficient or supplemented (control) diet for up to 14 days following a 12 h fast. At various times during this period animals were killed, livers were removed, and a microsomal fraction was prepared and assayed for CDPdiacylglycerol inositol transferase activity and for phosphatidylinositol-inositol exchange activity. Within 2 days after beginning the regimen, rats consuming the deficient diet had a 40% lower activity of the transferase than rats consuming the control diet. This difference was maintained throughout the feeding period and developed simultaneously with the accumulation of triacylglycerol in the deficient livers. In contrast, the specific activity of the exchange enzyme was unchanged by feeding the deficient diet.  相似文献   

20.
Perfusion of livers from fed and fasted rats with 0.07--0.1 mM t-butyl hydroperoxide for 15 min decreased the levels of reduced glutathione (GSH) by 1.5 mumol/g liver in both nutritional states. Glutathione disulfide (GSSG) was increased by 70 and 140 nmol/g liver and glutathione mixed disulfides enhanced by 45 and 150 nmol/g liver in livers from fed and fasted animals, respectively. The ratio of GSH/GSSG was decreased from 243 to 58 in fed animals, and from 122 to 8 in fasted animals. The increase of GSSG and the mixed disulfides was nearly parallel until an apparently critical low GSH content of 1.5 mumol/g was reached. Only in livers from fasted rats 14CO2-production from [1-14C]glucose was stimulated upon t-butyl hydroperoxide infusion at the employed rates. Flux of glucose through pentose phosphate cycle rose from 8 to 12% of glucose utilization via glycolysis, whereas in livers from fed animals this portion remained unchanged at 8% Dithio-erythritol reversed pentose phosphate cycle activity as well as GSSG and protein-bound glutathione contents to the original levels. In livers from fasted rats the activity of glucose-6-phosphate dehydrogenase was increased by 34% by t-butyl hydroperoxide infusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号