首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cathepsin D (CD) is an essential lysosomal protease and mice lacking this enzyme exhibit neuropathology similar to that observed in brains of patients with neuronal ceroid lipofuscinosces (NCL/Batten disease), a group of autosomal recessive pediatric neurodegenerative diseases. CD-deficient (CD-/-) brains exhibit a dramatic induction of autophagic stress as defined by the aberrant accumulation of autophagosomes, which is concomitant with markers of apoptosis. However, the signaling abnormalities which lead to CD deficiency-induced neurodegeneration are poorly defined. Since phosphatidylinositol-3 kinase (PI3-K) is known to regulate both apoptosis and autophagy, PI3-K-mediated signaling events were assessed in CD-/- brain at P14 and P25-26. Compared to WT littermate controls, CD-/- cortical neurons exhibited a widespread decrease in phosphorylation of Akt (inactivation) and GSK3beta (disinhibition) at P25-26, while levels of total Akt and GSK3beta remained unchanged. This P25-26-specific decrease in phosphorylation of Akt and GSK-3beta in CD-/- brain coincided temporally with markers of apoptosis but followed the induction of autophagic stress observed at both P14 and P25-26. In addition, levels and/or activation of mTOR and Beclin were not affected by CD deficiency, suggesting that the accumulation of autophagosomes is not due to an increased synthesis of autophagosomes but rather from an inhibition of autophagosome recycling, due most likely to a compromise in lysosome function. Together these observations indicate a pronounced decrease in pro-survival PI3-K signaling in CD-/- brain that may contribute to autophagic stress-induced and apoptotic neuropathology.  相似文献   

3.
The protein kinase Akt plays a central role in a number of key biological functions including protein synthesis, glucose homeostasis, and the regulation of cell survival or death. The mechanism by which tyrosine kinase growth factor receptors stimulate Akt has been recently defined. In contrast, the mechanism of activation of Akt by other cell surface receptors is much less understood. For G protein-coupled receptors (GPCRs), conflicting data suggest that these receptors stimulate Akt in a cell type-specific manner by a yet to be fully elucidated mechanism. Here, we took advantage of the availability of cells, where Akt activity could not be enhanced by agonists acting on this large family of cell surface receptors, such as NIH 3T3 cells, to investigate the pathway linking GPCRs to Akt. We present evidence that expression of phosphatidylinositol 3-kinase (PI3K) beta is necessary and sufficient to transmit signals from G proteins to Akt in these murine fibroblasts and that the activation of PI3Kbeta may represent the most likely mechanism whereby GPCRs stimulate Akt, as the vast majority of cells do not express PI3Kgamma, a known G protein-sensitive PI3K isoform. Furthermore, available evidence indicates that GPCRs activate Akt by a pathway distinct from that utilized by growth factor receptors, as it involves the tyrosine phosphorylation-independent activation of PI3Kbeta by G protein betagamma dimers.  相似文献   

4.
Phospholipase C-gamma (PLC-gamma) isoforms are thought to be activated by both tyrosine phosphorylation and phosphatidylinositol 3,4,5 trisphosphate (PtdIns 3,4,5 P(3)), the product of phosphatidylinositol 3-kinase (PtdIns 3-kinase). In this study, we show that stimulation of mouse macrophages with either zymosan beads or bacteria (Prevotella intermedia) induced tyrosine phosphorylation of PLC-gamma 2. Zymosan stimulation also induced translocation to membrane and cytoskeleton fractions, which was inhibited by the PtdIns 3-kinase inhibitors wortmannin and LY 294002. However, the tyrosine phosphorylation of PLC-gamma 2 induced by zymosan was not affected by the inhibitors wortmannin and LY 294002. In contrast to zymosan and bacteria, PLC-gamma 2 was not phosphorylated by stimulation with lipopolysaccharide (LPS), phorbol ester or calcium ionophore. Moreover, the PLC-gamma 1 isoform was not detected in mouse macrophages. These data indicate that PtdIns 3-kinase is critical for the translocation but not for the tyrosine phosphorylation of PLC-gamma 2 in mouse macrophages and that the latter may be insufficient for enzyme activation.  相似文献   

5.
6.
Miao B  Degterev A 《Autophagy》2011,7(6):650-651
The critical role of phopshatidylinositol-3-kinase (PtdIns3K) signaling in the regulation of a wide range of cellular functions, including cell survival and proliferation, autophagy, metabolism and cell migration, is well recognized. Activation of PtdIns3K leads to the generation of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P 3). PtdIns(3,4,5)P 3 activates a complex signaling network controlling these diverse cellular functions through binding to Pleckstrin Homology (PH) domains of the effector proteins. We have recently described a new structural class of nonphosphoinositide small molecule inhibitors targeting binding of PtdIns(3,4,5) P 3 to PH domain targets. Using an in vitro PtdIns(3,4,5)P 3-PH domain binding assay, we identified two distinct PtdIns(3,4,5)P 3 antagonists, PIT-1 and PIT-2. Further cellular analysis revealed that both PITs inhibit PtdIns(3,4,5) P 3-dependent signaling mediated by Akt kinase, leading to the induction of apoptosis, metabolic stress and autophagy. An improved PIT-1 analog, DM-PIT-1, displays significant anticancer activity in the mouse syngeneic 4T1 breast cancer model in vivo. Discovery of PITs as well as other PtdIns(3,4,5)P 3 antagonists recently described by other laboratories suggest the possibility of targeting a key universal PtdIns(3,4,5)P 3/PH domain binding step in the PtdIns3K pathway using heterologous small molecule modulators.  相似文献   

7.
8.
《Autophagy》2013,9(6):650-651
The critical role of phopshatidylinositol-3-kinase (PtdIns3K) signaling in the regulation of a wide range of cellular functions, including cell survival and proliferation, autophagy, metabolism and cell migration, is well recognized. Activation of PtdIns3K leads to the generation of phosphatidylinositol-3,4,5-triphosphate (PtdIns(3,4,5)P3). PtdIns(3,4,5)P3 activates a complex signaling network controlling these diverse cellular functions through binding to Pleckstrin Homology (PH) domains of the effector proteins. We have recently described a new structural class of nonphosphoinositide small molecule inhibitors targeting binding of PtdIns(3,4,5) P3 to PH domain targets. Using an in vitro PtdIns(3,4,5)P3-PH domain binding assay, we identified two distinct PtdIns(3,4,5)P3 antagonists, PIT-1 and PIT-2. Further cellular analysis revealed that both PITs inhibit PtdIns(3,4,5) P3-dependent signaling mediated by Akt kinase, leading to the induction of apoptosis, metabolic stress and autophagy. An improved PIT-1 analog, DM-PIT-1, displays significant anticancer activity in the mouse syngeneic 4T1 breast cancer model in vivo. Discovery of PITs as well as other PtdIns(3,4,5)P3 antagonists recently described by other laboratories suggest the possibility of targeting a key universal PtdIns(3,4,5)P3/PH domain binding step in the PtdIns3K pathway using heterologous small molecule modulators.  相似文献   

9.
Cancer-specific mutations in phosphatidylinositol 3-kinase   总被引:3,自引:0,他引:3  
Cancer-specific mutations in the catalytic subunit of phosphatidylinositol 3-kinase (PI3K) p110 alpha occur in diverse tumors in frequencies that can exceed 30%. The majority of these mutations map to one of three hot spots in the gene, and the rest are distributed over much of the PI3K coding sequence. Most of the cancer-specific mutations induce a gain of function that results in oncogenicity, elevated lipid kinase activity and constitutive signaling through the kinases Akt and TOR. The location of the mutations on a model structure of p110 alpha indicates several distinct mechanisms for the gain of function. The mutated p110 alpha proteins are promising cancer targets. Although identification of mutant-specific small-molecule inhibitors seems technically challenging, the therapeutic benefits from such inhibitors could be extremely important.  相似文献   

10.
11.

Background

Legionella pneumophila, is an intracellular pathogen that causes Legionnaires'' disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis.

Methodology/Principal Findings

Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85α subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells.

Conclusion/Significance

Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies for undermining L. pneumophila host uptake and reducing pathogenesis of Legionnaires'' disease.  相似文献   

12.
Triggering of the macrophage cell line RAW 264.7 with LPS promotes a transient activation of phosphatidylinositol 3-kinase (PI3-kinase). Incubation of activated macrophages with wortmannin and LY294002, two inhibitors of PI3-kinase, increased the amount of inducible nitric oxide synthase (iNOS) and the synthesis of nitric oxide. Treatment with wortmannin promoted a prolonged activation of NF-kappaB in LPS-treated cells as well as an increase in the promoter activity of the iNOS gene as deduced from transfection experiments using a 1.7-kb fragment of the 5' flanking region of the iNOS gene. Cotransfection of cells with a catalytically active p110 subunit of PI3-kinase impaired the responsiveness of the iNOS promoter to LPS stimulation, whereas transfection with a kinase-deficient mutant of p110 maintained the up-regulation in response to wortmannin. These results indicate that PI3-kinase plays a negative role in the process of macrophage activation and suggest that this enzyme might participate in the mechanism of action of antiinflammatory cytokines.  相似文献   

13.
The phosphatidylinositol (PI) 3-kinase pathway is an important regulator of cell survival. In human alveolar macrophages, we found that LPS activates PI 3-kinase and its downstream effector, Akt. LPS exposure of alveolar macrophages also results in the generation of ceramide. Because ceramide exposure induces apoptosis in other cell types and the PI 3-kinase pathway is known to inhibit apoptosis, we determined the relationship between LPS-induced ceramide and PI 3-kinase activation in alveolar macrophages. We found that ceramide exposure activated PI 3-kinase and Akt. When we blocked LPS-induced ceramide with the inhibitor D609, we blocked LPS-induced PI 3-kinase and Akt activation. Evaluating cell survival after ceramide or LPS exposure, we found that blocking PI 3-kinase induced a significant increase in cell death. Because these effects of PI 3-kinase inhibition were more pronounced in ceramide- vs LPS-treated alveolar macrophages, we also evaluated NF-kappaB, which has also been linked to cell survival. We found that LPS, to a greater degree than ceramide, induced NF-kappaB translocation to the nucleus. As a composite, these studies suggest that the effects of ceramide exposure in alveolar macrophages may be very different from the effects described for other cell types. We believe that LPS induction of ceramide results in PI 3-kinase activation and represents a novel effector mechanism that promotes survival of human alveolar macrophages in the setting of pulmonary sepsis.  相似文献   

14.
Src family tyrosine kinases have previously been proposed to mediate some of the biological effects of lipopolysaccharide on macrophages. Accordingly, we have sought to identify substrates of Src family kinases in lipopolysaccharide-stimulated macrophages. Stimulation of Bac1.2F5 macrophage cells with lipopolysaccharide was found to induce gradual and persistent tyrosine phosphorylation of Cbl in an Src family kinase-dependent manner. Immunoprecipitation experiments revealed that Cbl associates with Hck in Bac1.2F5 cells, while expression of an activated form of Hck in Bac1.2F5 cells induces tyrosine phosphorylation of Cbl in the absence of lipopolysaccharide stimulation. The Src homology 3 domain of Hck can directly bind Cbl, and this interaction is important for phosphorylation of Cbl. Association of the p85 subunit of phosphatidylinositol (PI) 3-kinase with Cbl is enhanced following lipopolysaccharide stimulation of Bac1.2F5 cells, and transient expression experiments indicate that phosphorylation of Cbl by Hck can facilitate the association of p85 with Cbl. Lipopolysaccharide treatment also stimulates the partial translocation of Hck to the cytoskeleton of Bac1.2F5 cells. Notably, lipopolysaccharide enhances the adherence of Bac1.2F5 cells, an effect that is dependent on the activity of Src family kinases and PI 3-kinase. Thus, we postulate that Hck enhances the adherence of lipopolysaccharide-stimulated macrophages, at least in part, via Cbl and PI 3-kinase.  相似文献   

15.
Suppressor of cytokine signaling-3 (SOCS3) is thought to be involved in the development of central leptin resistance and obesity by inhibiting STAT3 pathway. Because phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in transducing leptin action in the hypothalamus, we examined whether SOCS3 exerted an inhibition on this pathway. We first determined whether leptin sensitivity in the hypothalamic PI3K pathway was increased in brain-specific Socs3-deficient (NesKO) mice. In NesKO mice, hypothalamic insulin receptor substrate-1 (IRS1)-associated PI3K activity was significantly increased at 30 min and remained elevated up to 2 h after leptin intraperitoneal injection, but in wild-type (WT) littermates, the significant increase was only at 30 min. Hypothalamic p-STAT3 levels were increased up to 5 h in NesKO as opposed to 2 h in WT mice. In food-restricted WT mice with reduced body weight, leptin increased hypothalamic PI3K activity only at 30 min, and p-STAT3 levels at 30-120 min postinjection. These results suggest increased leptin sensitivity in both PI3K and STAT3 pathways in the hypothalamus of NesKO mice, which was not due to a lean phenotype. In the next experiment with a clonal hypothalamic neuronal cell line expressing proopiomelanocortin, we observed that whereas leptin significantly increased IRS1-associated PI3K activity and p-JAK2 levels in cells transfected with control vector, it failed to do so in SOCS3-overexpressed cells. Altogether, these results imply a SOCS3 inhibition of the PI3K pathway of leptin signaling in the hypothalamus, which may be one of the mechanisms behind the development of central leptin resistance and obesity.  相似文献   

16.
《Life sciences》1995,57(7):685-694
The metabolism of phosphoinositides plays an important role in the signal transduction pathways. We report here that naturally occuring polyamines affect the activities of phosphatidylinositol (PI) 3-kinase and PI 4-phosphate (PIP) 5-kinase differently. While polyamines inhibited the PI 3-kinase activity, they stimulated the activity of PIP 5-kinase in the order of spermine > spermidine > putrescine. Spermine inhibited the PI 3-kinase activity in a concentration-dependent manner with an IC50 of 100 μM. On the other hand, spermine (5 mH) stimulated the activity of PIP 5-kinase 2–3 fold. Kinetic studies of spermine-mediated inhibition of PI 3-kinase revealed that it was noncompetitive with respect to ATP. The effect of Mg2+ and PIP, concentration on kinase activity was sigmoidal, with spermine inhibiting PI 3-kinase activity at all PIP2 concentrations. While 1 mH calcium stimulated PI 3-kinase activity at submaximal concentrations of Mg2+ (1.25 mH), inhibition was observed at optimal concentration of Mg2+(2 mM). We propose that spermine may modulate the cellular signal by virtue of its differential effects on phosphoinositide kinases.  相似文献   

17.
Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein-tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein-tagged fragments of p85 we show that binding to the receptor requires the NH(2)-terminal part of the protein as well as its SH2 domains.  相似文献   

18.
Severe burn injury is associated with induction of the hepatic endoplasmic reticulum (ER) stress response. ER stress leads to activation of c-Jun N-terminal kinase (JNK), suppression of insulin receptor signaling via phosphorylation of insulin receptor substrate 1 and subsequent insulin resistance. Marked and sustained increases in catecholamines are prominent after a burn. Here, we show that administration of propranolol, a nonselective β1/2 adrenergic receptor antagonist, attenuates ER stress and JNK activation. Attenuation of ER stress by propranolol results in increased insulin sensitivity, as determined by activation of hepatic phosphatidylinositol 3-kinase and Akt. We conclude that catecholamine release is responsible for the ER stress response and impaired insulin receptor signaling after burn injury.  相似文献   

19.
We have previously shown that transactivation-proficient hepatitis virus B X protein (HBx) protects Hep 3B cells from transforming growth factor-beta (TGF-beta)-induced apoptosis via activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway. This work further investigated how HBx activates PI 3-kinase. Src activity was elevated in Hep 3B cells following expression of transactivation-proficient HBx or HBx-GFP fusion proteins. The Src family kinase inhibitor PP2 and C-terminal Src kinase (Csk) both alleviated HBx-mediated PI 3-kinase activation and protection from TGF-beta-induced apoptosis. Therefore, HBx activated a survival signal by linking Src to PI 3-kinase. Systemic subcellular fractionation and membrane flotation assays indicated that approximately 1.5% of ectopically expressed HBxGFP was associated with periplasmic membrane where Src was located. However, neither nucleus-targeted nor periplasmic membrane-targeted HBxGFP was able to upregulate Src activity or to augment PI 3-kinase survival signaling pathway.  相似文献   

20.
Phosphatidylinositol 3-kinase (PI 3-kinase) plays a role in late stages of endocytosis as well as in cellular proliferation and transformation. The SH3 domain of its regulatory p85 subunit stimulates the GTPase activity of dynamin in vitro. Dynamin is a GTPase enzyme required for endocytosis of activated growth factor receptors. An interaction between these proteins has not been demonstrated in vivo. Here, we report that dynamin associates with PI 3-kinase in hematopoietic cells. We detected both p85 and PI 3-kinase activity in dynamin immune complexes from IL-3-dependent BaF3 cells. However, this association was significantly reduced in BaF3 cells transformed with the BCR/abl oncogene. After transformation only a 4-fold increase in PI 3-kinase activity was detected in dynamin immune complexes, whereas grb2 associated activity was elevated 20-fold. Furthermore, dynamin inhibited the activity of both purified recombinant and immunoprecipitated PI 3-kinase. In BaF3 cells expressing a temperature-sensitive mutant of BCR/abl, a significant decrease in p85 and dynamin association was observed 4 h after the induction of BCR/abl activity. In contrast, in IL-3-stimulated parental BaF3 cells, this association was increased. Our results demonstrate an in vivo association of PI 3-kinase with dynamin and this interaction regulates the activity of PI 3-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号