首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we calculate the unpredictable portion of amino-acid pairs, which has been developed by us over the last several years, of 1201 hemagglutinins from influenza A viruses dated from 1918 to 2004 in order to compare them with respect to subtypes, species, and years. After noticing the fluctuations of unpredictable portion along the time course, we use the fast Fourier transform to find the mutation periodicity of hemagglutinins. Then we estimate our position at the current cycle of hemagglutinin evolutionary process to determine how many years remain before the next outbreak of influenza and bird flu. Finally, we use the trend line and channel to outlook the hemagglutinins for the next half a century. As our study covers almost all the full-length amino-acid sequences of hemagglutinins from various influenza A viruses, the conclusion will be valid for years until the number of hemagglutinins in protein databank will be significantly increased.  相似文献   

2.
After several studies on prediction of mutation, we examine the effect of three sampling strategies, the sampling based on years, the sampling based on number of mutations, and the sampling based on the unpredictable portion of amino-acid pairs, on the prediction performance in H5N1 hemagglutinins. The results show that the sampling strategy does play an important role in prediction, which should be taken into account when predicting the next generation of mutations in proteins from influenza A virus.  相似文献   

3.
Agglutination of red blood cells (RBCs), including chicken RBCs (cRBCs), has been used extensively to estimate viral titer, to screen glycan-receptor binding preference, and to assess the protective response of vaccines. Although this assay enjoys widespread use, some virus strains do not agglutinate RBCs. To address these underlying issues and to increase the usefulness of cRBCs as tools for studying viruses, such as influenza, we analyzed the cell surface N-glycans of cRBCs. On the basis of the results obtained from complementary analytical strategies, including MS, 1D and 2D-NMR spectroscopy, exoglycosidase digestions, and HPLC profiling, we report the major glycan structures present on cRBCs. By comparing the glycan structures of cBRCs with those of representative human upper respiratory cells, we offer a possible explanation for the fact that certain influenza strains do not agglutinate cRBCs, using specific human-adapted influenza hemagglutinins as examples. Finally, recent understanding of the role of various glycan structures in high affinity binding to influenza hemagglutinins provides context to our findings. These results illustrate that the field of glycomics can provide important information with respect to the experimental systems used to characterize, detect and study viruses.  相似文献   

4.
In this study, we determine the mutation relation among 333 H5N1 hemagglutinins of influenza A viruses according to their amino acid and RNA codon sequences. Then, we calculate seven probabilistic numbers, which have been developed by us since 1999, for each amino acid in these hemagglutinins. With the seven numeric numbers as independents and the probability of occurrence of mutation at each hemagglutinin position as dependent, we use the logistic regression to model 967 missense point mutations from 333 hemagglutinins to get the population estimates. Thereafter, we predict the future mutation positions in H5N1 hemagglutinin. Finally, we use the translation probabilities between RNA codons and mutated amino acids to predict the would-be-mutated amino acids in H5N1 hemagglutinin.  相似文献   

5.
To analyze the compatibility of avian influenza A virus hemagglutinins (HAs) and human influenza A virus matrix (M) proteins M1 and M2, we doubly infected Madin-Darby canine kidney cells with amantadine (1-aminoadamantane hydrochloride)-resistant human viruses and amantadine-sensitive avian strains. By using antisera against the human virus HAs and amantadine, we selected reassortants containing the human virus M gene and the avian virus HA gene. In our system, high virus yields and large, well-defined plaques indicated that the avian HAs and the human M gene products could cooperate effectively; low virus yields and small, turbid plaques indicated that cooperation was poor. The M gene products are among the primary components that determine the species specificities of influenza A viruses. Therefore, our system also indicated whether the avian HA genes effectively reassorted into the genome and replaced the HA gene of the prevailing human influenza A viruses. Most of the avian HAs that we tested efficiently cooperated with the M gene products of the early human A/PR/8/34 (H1N1) virus; however, the avian HAs did not effectively cooperate with the most recently isolated human virus that we tested, A/Nanchang/933/95 (H3N2). Cooperation between the avian HAs and the M proteins of the human A/Singapore/57 (H2N2) virus was moderate. These results suggest that the currently prevailing human influenza A viruses might have lost their ability to undergo antigenic shift and therefore are unable to form new pandemic viruses that contain an avian HA, a finding that is of great interest for pandemic planning.  相似文献   

6.
Formation of hemagglutinin spikes in the course of the mixed infection of cell culture by two influenza virus strains belonging to the same antigenic subtype or to different subtypes was studied by means of immunoprecipitation of [14C]-labelled hemagglutinins from cell lysates. The immunoprecipitates were further analysed by polyacrylamide gel electrophoresis. Lysates of separately infected cells mixed before lysis were used as control samples. The analysis of immunoprecipitates revealed the formation of chimeric hemagglutinin spikes in the cells infected by the strains possessing hemagglutinins of the same subtype but not in the cells infected by the strains of different subtypes (H1 and H3). The results are discussed in connection with the homology of amino-acid sequences of influenza virus hemagglutinins.  相似文献   

7.
Current influenza virus vaccines contain H1N1 (phylogenetic group 1 hemagglutinin), H3N2 (phylogenetic group 2 hemagglutinin), and influenza B virus components. These vaccines induce good protection against closely matched strains by predominantly eliciting antibodies against the membrane distal globular head domain of their respective viral hemagglutinins. This domain, however, undergoes rapid antigenic drift, allowing the virus to escape neutralizing antibody responses. The membrane proximal stalk domain of the hemagglutinin is much more conserved compared to the head domain. In recent years, a growing collection of antibodies that neutralize a broad range of influenza virus strains and subtypes by binding to this domain has been isolated. Here, we demonstrate that a vaccination strategy based on the stalk domain of the H3 hemagglutinin (group 2) induces in mice broadly neutralizing anti-stalk antibodies that are highly cross-reactive to heterologous H3, H10, H14, H15, and H7 (derived from the novel Chinese H7N9 virus) hemagglutinins. Furthermore, we demonstrate that these antibodies confer broad protection against influenza viruses expressing various group 2 hemagglutinins, including an H7 subtype. Through passive transfer experiments, we show that the protection is mediated mainly by neutralizing antibodies against the stalk domain. Our data suggest that, in mice, a vaccine strategy based on the hemagglutinin stalk domain can protect against viruses expressing divergent group 2 hemagglutinins.  相似文献   

8.
The complete nucleotide sequence of the influenza C/California/78 virus RNA 4 was obtained by using cloned cDNA derived from the RNA segment. This gene is 2,071 nucleotides long and can code for a polypeptide of 654 amino acids. Although there are no convincing sequence homologies between RNA 4 and the hemagglutinin genes of influenza A and B viruses, we suggest, on the basis of structural features, that RNA 4 of the influenza C virus codes for the hemagglutinin. The structural features which are common to the hemagglutinins of influenza A, B, and C viruses include (i) a hydrophobic signal peptide, (ii) an arginine cleavage site between the hemagglutinin 1 and 2 subunits, (iii) hydrophobic regions at the amino and carboxyl termini of the hemagglutinin 2 subunit, and (iv) several conserved cysteine residues. Additional evidence that RNA 4 of influenza C virus codes for the hemagglutinin is that the tripeptide Ile-Phe-Gly, known to be present at the amino terminus of the hemagglutinin 2 subunit of influenza C virus, is encoded by RNA 4 at a point immediately adjacent to the presumptive arginine cleavage site. The lack of primary sequence homology between the influenza C virus hemagglutinin and the influenza A or B virus hemagglutinins, which all have similar functions, might be attributed to convergent rather than divergent evolution. However, the structural similarities among the influenza A, B, and C virus hemagglutinins strongly suggest that the three hemagglutinin genes have diverged from a common precursor.  相似文献   

9.
Wu G  Yan S 《Amino acids》2008,34(1):81-90
Summary. In this proof-of-concept study, we attempt to determine whether the cause-mutation relationship defined by randomness is protein dependent by predicting mutations in H5N1 neuraminidases from influenza A virus, because we have recently conducted several concept-initiated studies on the prediction of mutations in hemagglutinins from influenza A virus. In our concept-initiated studies, we defined the randomness as a cause for mutation, upon which we built a cause-mutation relationship, which is then switched into the classification problem because the occurrence and non-occurrence of mutations can be classified as unity and zero. Thereafter, we used the logistic regression and neural network to solve this classification problem to predict the mutation positions in hemagglutinins, and then used the amino acid mutating probability to predict the would-be-mutated amino acids. As the previous results were promising, we extend this approach to other proteins, such as H5N1 neuraminidase in this study, and further address various issues raised during the development of this approach. The result of this study confirms that we can use this cause-mutation relationship to predict the mutations in H5N1 neuraminidases. Authors’ address: Guang Wu, Computational Mutation Project, DreamSciTech Consulting 301, Building 12, Nanyou A-zone, Jiannan Road, Shenzhen, Guangdong Province CN-518054, China  相似文献   

10.
In this study, we use the cross-impact analysis to define the relationship among impact, mutation, and outbreak of bird flu. Then we use the distribution rank, which is developed by us over last several years, to quantify the mutations from amino acid sequences of 134 hemagglutinins and 97 neuraminidases. With the help of Bayesian equation, we calculate the probability of occurring of mutation in H5, H6, and H9 hemagglutinins, and N1 and N2 neuraminidases. Finally, we estimate the probability of occurring of mutation with different intensities of an impact. Although we have no means to predict an impact, which is severe enough to lead to the mutations in hemagglutinins and neuraminidases resulting in the outbreak of bird flu, we can in principle monitor the changes in distribution rank along the time course, and predict the trend of mutations, even to predict the degree of outbreak of bird flu.  相似文献   

11.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

12.
Probably the best way to predict mutations is to find the cause for mutations, by which the cause–mutation relationship can be built. However, many causes which have resulted in mutations in the past might not leave any trace due to the changes in environments. As well, the current proteins may not be sensitive to the causes, which led to mutations in the past, because of evolution. Thus we might have recorded many mutations, but few of their corresponding causes, and it would be difficult to establish the one-to-one cause–mutation relationship. However, the internal power engineering mutations within a protein would exist, of which randomness should play an important role. Since 1999, we have developed three methods to quantify the randomness within a protein by which we can build a cause–mutation relationship because we can classify the occurrence and non-occurrence of mutation as unity and zero, and transfer this relationship into the classification problem, which can be solved using logistic regression. Recently, we used the logistic regression to predict the mutation positions in H5N1 hemagglutinins from influenza A virus, and applied the amino-acid mutating probability to predict the would-be-mutated amino acids at predicted positions as the concept-initiated study. However, we still need to conduct many proof-of-concept studies to test whether this cause–mutation relationship is independent of protein subtypes, whether the logistic regression is powerful enough, etc. In this study, we attempted to use the logistic regression to predict the mutation positions in H3N2 hemagglutinins of influenza A virus from North America to answer the questions in the proof-of-concept stage.  相似文献   

13.
The influenza virus hemagglutinin molecule possesses a globular head domain that mediates receptor binding and a stalk domain at the membrane-proximal region. We generated functional influenza viruses expressing chimeric hemagglutinins encompassing a variety of globular head and stalk combinations, not only from different hemagglutinin subtypes but also from different hemagglutinin phylogenetic groups. These chimeric recombinant viruses possess growth properties similar to those of wild-type influenza viruses and can be used as reagents to measure domain-specific antibodies in virological and immunological assays.  相似文献   

14.
An epidemic of an avian-origin H7N9 influenza virus has recently emerged in China, infecting 134 patients of which 45 have died. This is the first time that an influenza virus harboring an N9 serotype neuraminidase (NA) has been known to infect humans. H7N9 viruses are divergent and at least two distinct NAs and hemagglutinins (HAs) have been found, respectively, from clinical isolates. The prototypes of these viruses are A/Anhui/1/2013 and A/Shanghai/1/2013. NAs from these two viruses are distinct as the A/Shanghai/1/2013 NA has an R294K substitution that can confer NA inhibitor oseltamivir resistance. Oseltamivir is by far the most commonly used anti-influenza drug due to its potency and high bioavailability. In this study, we show that an R294K substitution results in multidrug resistance with extreme oseltamivir resistance (over 100 000-fold) using protein- and virus-based assays. To determine the molecular basis for the inhibitor resistance, we solved high-resolution crystal structures of NAs from A/Anhui/1/2013 N9 (R294-containing) and A/Shanghai/1/2013 N9 (K294-containing). R294K substitution results in an unfavorable E276 conformation for oseltamivir binding, and consequently loss of inhibitor carboxylate interactions, which compromises the binding of all classical NA ligands/inhibitors. Moreover, we found that R294K substitution results in reduced NA catalytic efficiency along with lower viral fitness. This helps to explain why K294 has predominantly been found in clinical cases of H7N9 infection under the selective pressure of oseltamivir treatment and not in the dominant human-infecting viruses. This implies that oseltamivir can still be efficiently used in the treatment of H7N9 infections.  相似文献   

15.
Seasonal epidemics caused by antigenic variations in influenza A virus remain a public health concern and an economic burden. The isolation and characterization of broadly neutralizing anti-hemagglutinin monoclonal antibodies (MAb) have highlighted the presence of highly conserved epitopes in divergent influenza A viruses. Here, we describe the generation and characterization of a mouse monoclonal antibody designed to target the conserved regions of the hemagglutinin of influenza A H1 viruses, a subtype that has caused pandemics in the human population in both the 20th and 21st centuries. By sequentially immunizing mice with plasmid DNA encoding the hemagglutinin of antigenically different H1 influenza A viruses (A/South Carolina/1/1918, A/USSR/92/1977, and A/California/4/2009), we isolated and identified MAb 6F12. Similar to other broadly neutralizing MAb previously described, MAb 6F12 has no hemagglutination inhibition activity against influenza A viruses and targets the stalk region of hemagglutinins. As designed, it has neutralizing activity against a divergent panel of H1 viruses in vitro, representing 79 years of antigenic drift. Most notably, MAb 6F12 prevented gross weight loss against divergent H1 viruses in passive transfer experiments in mice, both in pre- and postexposure prophylaxis regimens. The broad but specific activity of MAb 6F12 highlights the potent efficacy of monoclonal antibodies directed against a single subtype of influenza A virus.  相似文献   

16.
Influenza virus transfectants with chimeric hemagglutinins were constructed by using a ribonucleoprotein transfection method. Transfectants W(H1)-H2 and W(H1)-H3 contained A/WSN/33(H1N1) (WSN) hemagglutinins in which the six-amino-acid loop (contained in antigenic site B) was replaced by the corresponding structures of influenza viruses A/Japan/57(H2N2) and A/Hong Kong/8/68(H3N2) (HK), respectively. Serological analysis indicated that the W(H1)-H3 transfectant virus reacted with antibodies against both the WSN and HK viruses in hemagglutination inhibition and plaque neutralization assays. Furthermore, mice immunized with W(H1)-H3 transfectant virus produced antibodies to the WSN and HK viruses. The results demonstrate that influenza virus transfectants can be engineered to express epitopes of different subtypes on their hemagglutinins.  相似文献   

17.
Native detergents, desintegron-O-and desintegron-B, solubilize hemagglutinins of the influenza virus as intensively, as foreign drugs (mulgophen, zwittergent and sodium sarcozyl) do. This permits recommending desintegrons for quantitative determination of hemagglutinin of the influenza virus in virus-containing materials by means of the reaction of single radial immunodiffusion. Desintegron-O and desintegron-B permit extracting enzymatically active neuraminidase from influenza A viruses with 44.6-83.4% yield.  相似文献   

18.
In this study, we use our probabilistic models to analyze 130 hemagglutinins from different influenza A virus in order to gain the insight into their fate. The results provide three lines of evidence regarding the H5, H6, and H9 hemagglutinins: (i) the H5 hemagglutinins are more sensitive to mutations, this is the current state of the H5, H6, and H9 hemagglutinins; (ii) the H5 hemagglutinins had experienced more mutations in the past, this is the history of the H5, H6, and H9 hemagglutinins; and (iii) the H6 hemagglutinins has a bigger potential towards future mutations, this is the future of the H5, H6, and H9 hemagglutinins. Furthermore, this study gives two clues on the mutation tendency that is a degeneration process and the species susceptibility that is the chickens and ducks.  相似文献   

19.
In this study, we used the 183 translation probabilities between RNA codons and mutated amino acids to construct the theoretical distributions of mutated amino acids in hemagglutinins of influenza A virus. We then compared the actual distributions of mutated amino acids from 953 hemagglutinins with their theoretical ones. The results demonstrated that mutated amino acids generally follow the direction of the theoretical distributions governed by RNA codons. This, in turn, highlights the mutation trend of amino acids in hemagglutinins and provides a method for estimating possible mutations in a protein according to its theoretical distributions of mutated amino acids.  相似文献   

20.
The protective role of cytotoxic lymphocytes (CTL) in dependence on composition of antigenic determinants of hemagglutinin of influenza viruses H3N2 was studied. It was established that CTL do not exert protective effect under conditions of adoptive transfer, when there is one common antigenic determinant in hemagglutinins of the virus forming immunity. When all antigenic determinants in hemagglutinins of influenza viruses are identical, CTL-like antibodies represent one of the main factors of antivirus immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号