首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chung YS  Kocks C 《Fly》2012,6(1):21-25
Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans. Thus, studying a Drosophila phagocytosis receptor may advance our understanding of innate immunity in general.  相似文献   

2.
《Fly》2013,7(1):21-25
Phagocytosis is an evolutionarily ancient, receptor-driven process, by which phagocytic cells recognize invading microbes and destroy them after internalization. The phagocytosis receptor Eater is expressed exclusively on Drosophila phagocytes and is required for the survival of bacterial infections. In a recent study, we explored how Eater can defend fruit flies against different kinds of bacteria. We discovered that Eater bound to certain types of bacteria directly, while for others bacterial binding was dependent on prior disruption of the bacterial envelope. Similar to phagocytes, antimicrobial peptides and lysozymes are ancient components of animal immune systems. Our results suggest that cationic antimicrobial peptides, as well as lysozymes, can facilitate Eater binding to live Gram-negative bacteria. Both types of molecules promote surface-exposure of bacterial ligands that otherwise would remain buried and hidden under an outer membrane. We propose that unmasking ligands for phagocytic receptors may be a conserved mechanism operating in many animals, including humans. Thus, studying a Drosophila phagocytosis receptor may advance our understanding of innate immunity in general.  相似文献   

3.
Phagocytosis of apoptotic cells and the resolution of inflammation   总被引:10,自引:0,他引:10  
Clearance of apoptotic cells by phagocytic cells plays a significant role in the resolution of inflammation, protecting tissue from harmful exposure to the inflammatory and immunogenic contents of dying cells. Apoptosis induces cell surface changes that are important for recognition and engulfment of cells by phagocytes. These changes include alterations in surface sugars, externalization of phosphatidylserine and qualitative changes in the adhesion molecule ICAM-3. Several studies have contributed to clarify the role of the receptors on the surface of phagocytes that are involved in apoptotic cell clearance. The phagocytic removal of apoptotic cells does not elicit pro-inflammatory responses; in contrast, apoptotic cell engulfment appears to activate signals that suppress release of pro-inflammatory cytokines. Therefore, clearance of apoptotic leucocytes is implicated in the resolution of inflammation and mounting evidence suggests that defective clearance of apoptotic cells contributes to inflammatory and autoimmune diseases. Defining the ligands on apoptotic cells and the corresponding receptors on phagocytes with which they engage, is likely to lead to the development of novel anti-inflammatory pro-resolution drugs. In this article, we will review the recognition and signaling mechanisms involved in the phagocytosis of apoptotic cells as well as the role of endogenous compounds that play a relevant role in the modulation of inflammation. We will also discuss what is currently known about diseases that may reflect impaired phagocytosis and the consequences on inflammation and immune responses.  相似文献   

4.
Clearance of apoptotic cells by phagocytic neighbors is crucial for normal development of multicellular organisms. However, how phagocytes discriminate between healthy and dying cells remains poorly understood. We focus on glial phagocytosis of apoptotic neurons during development of the Drosophila central nervous system. We identified phosphatidylserine (PS) as a ligand on apoptotic cells for the phagocytic receptor Six Microns Under (SIMU) and report that PS alone is not sufficient for engulfment. Our data reveal that, additionally to PS exposure, caspase activity is required for clearance of apoptotic cells by phagocytes. Here we demonstrate that SIMU recognizes and binds PS on apoptotic cells through its N-terminal EMILIN (EMI), Nimrod 1 (NIM1), and NIM2 repeats, whereas the C-terminal NIM3 and NIM4 repeats control SIMU affinity to PS. Based on the structure-function analysis of SIMU, we discovered a novel mechanism of internal inhibition responsible for differential affinities of SIMU to its ligand which might prevent elimination of living cells exposing PS on their surfaces.  相似文献   

5.
The mechanism of phagocytic elimination of dying cells in Drosophila is poorly understood. This study was undertaken to examine the recognition and engulfment of apoptotic cells by Drosophila hemocytes/macrophages in vitro and in vivo. In the in vitro analysis, l(2)mbn cells (a cell line established from larval hemocytes of a tumorous Drosophila mutant) were used as phagocytes. When l(2)mbn cells were treated with the molting hormone 20-hydroxyecdysone, the cells acquired the ability to phagocytose apoptotic S2 cells, another Drosophila cell line. S2 cells undergoing cycloheximide-induced apoptosis exposed phosphatidylserine on their surface, but their engulfment by l(2)mbn cells did not seem to be mediated by phosphatidylserine. The level of Croquemort, a candidate phagocytosis receptor of Drosophila hemocytes/macrophages, increased in l(2)mbn cells after treatment with 20-hydroxyecdysone, whereas that of Draper, another candidate phagocytosis receptor, remained unchanged. However, apoptotic cell phagocytosis was reduced when the expression of Draper, but not of Croquemort, was inhibited by RNA interference in hormone-treated l(2)mbn cells. We next examined whether Draper is responsible for the phagocytosis of apoptotic cells in vivo using an assay for engulfment based on assessing DNA degradation of apoptotic cells in dICAD mutant embryos (which only occurred after ingestion by the phagocytes). RNA interference-mediated decrease in the level of Draper in embryos of mutant flies was accompanied by a decrease in the number of cells containing fragmented DNA. Furthermore, histochemical analyses of dispersed embryonic cells revealed that the level of phagocytosis of apoptotic cells by hemocytes/macrophages was reduced when Draper expression was inhibited. These results indicate that Drosophila hemocytes/macrophages execute Draper-mediated phagocytosis to eliminate apoptotic cells.  相似文献   

6.
Phagocytosis of apoptotic cells   总被引:1,自引:0,他引:1  
Removal of apoptotic cells by phagocytes plays an important role in many biological processes, including embryological development and tissue remodelling. In addition, it has become apparent that one of the key mechanisms for the successful resolution of inflammation is the orchestrated clearance of apoptotic inflammatory cells by phagocytes (e.g., macrophages and dendritic cells) and other cells known to have phagocytic capacity (e.g., hepatocytes, endothelial cells, epithelial cells, etc.). Furthermore, phagocytosis of apoptotic cells is an active and highly regulated process that not only serves to remove potentially histotoxic cells from the inflammatory milieu, but also directs the phenotype of the phagocytic cell to be anti-inflammatory. Convincing evidence has been presented that reduced or dysregulated phagocytosis of apoptotic cells contributes to the development and propagation of inflammatory disorders. Conversely, enhanced phagocytosis of apoptotic cells may be exploited for therapeutic gain. Indeed, powerful anti-inflammatory drugs such as the glucocorticoids have been shown to augment clearance of apoptotic cells which may contribute to their therapeutic effectiveness. In this chapter, we describe methods for studying phagocytosis of apoptotic cells.  相似文献   

7.
The aim of this study was to investigate the interactions occurring between peripheral blood phagocytes and strains of S. aureus isolated from different clinical specimens (blood, respiratory tract, pus). To evaluate the sensitivity of microorganisms to bactericidal activity of phagocytes, monocytes and granulocytes separated from peripheral blood by standard density gradient and by counter-current centrifugal evaluation these cells were incubated with suspensions of opsonized bacteria. In parallel, the viability of phagocytes was examined by flow cytometry, and the ability of bacteria to trigger reactive oxygen intermediates (ROI) production was evaluated by chemiluminescence measurement. To investigate the efficiency of phagocytosis, bacteria were labelled with fluorescein isothiocynate (FITC) and the percentage of cells containing FITC-labelled bacteria were analysed by flow cytometry. The data obtained show the strains of S. aureus derived from different clinical specimens, differ in their sensitivity to bactericidal activity of phagocytes--strains isolated from the blood show the highest, but strains isolated from the respiratory tract have the lowest sensitivity to killing. These strains differ too in their ability to trigger monocyte CL response. On the contrary, there was no difference in toxicity of bacteria against phagocytes. Strains isolated from peripheral blood showed a significant negative correlation between the ability to trigger CL response and toxicity against phagocytes.  相似文献   

8.
T Arai  Y Mikami  K Yokoyama 《Sabouraudia》1977,15(2):171-177
Studies of host-parasite relationships at the cellular level, using Candida albicans and rabbit alveolar macrophages or guinea pig neutrophils are presented. Guinea pig neutrophils killed the intracellular candida cells presumed by myeloperoxidase-halide-hydrogen peroxide system. In contrast, rabbit alveolar macrophages did not kill the intracellular candida cells although their phagocytic rate was almost comparable to that of neutrophils. Phagocytizing macrophages were eventually destroyed by the intracellular proliferation of candida cells and formation of germ tubes and pseudomycelia. No significant improvement of candidacidal activity was observed with macrophages from normal and immunized rabbits in immune serum. The mode of phagocytosis by macrophages and neutrophils were also studied under the scanning electron microscope.  相似文献   

9.
Apoptotic cells are cleared by phagocytosis during development, homeostasis, and pathology. However, it is still unclear how necrotic cells are removed. We compared the phagocytic uptake by macrophages of variants of L929sA murine fibrosarcoma cells induced to die by tumor necrosis factor-induced necrosis or by Fas-mediated apoptosis. We show that apoptotic and necrotic cells are recognized and phagocytosed by macrophages, whereas living cells are not. In both cases, phagocytosis occurred through a phosphatidylserine-dependent mechanism, suggesting that externalization of phosphatidylserine is a general trigger for clearance by macrophages. However, uptake of apoptotic cells was more efficient both quantitatively and kinetically than phagocytosis of necrotic cells. Electron microscopy showed clear morphological differences in the mechanisms used by macrophages to engulf necrotic and apoptotic cells. Apoptotic cells were taken up as condensed membrane-bound particles of various sizes rather than as whole cells, whereas necrotic cells were internalized only as small cellular particles after loss of membrane integrity. Uptake of neither apoptotic nor necrotic L929 cells by macrophages modulated the expression of proinflammatory cytokines by the phagocytes.  相似文献   

10.
Phagocytosis of apoptotic cells by both professional and semi-professional phagocytes is required for resolution of organ damage and maintenance of immune tolerance. KIM-1/TIM-1 is a phosphatidylserine receptor that is expressed on epithelial cells and can transform the cells into phagocytes. Here, we demonstrate that KIM-1 phosphorylation and association with p85 results in encapsulation of phagosomes by lipidated LC3 in multi-membrane organelles. KIM-1-mediated phagocytosis is not associated with increased ROS production, and NOX inhibition does not block LC3 lipidation. Autophagy gene expression is required for efficient clearance of apoptotic cells and phagosome maturation. KIM-1-mediated phagocytosis leads to pro-tolerogenic antigen presentation, which suppresses CD4 T-cell proliferation and increases the percentage of regulatory T cells in an autophagy gene-dependent manner. Taken together, these data reveal a novel mechanism of epithelial biology linking phagocytosis, autophagy and antigen presentation to regulation of the inflammatory response.  相似文献   

11.
The engulfing, bactericidal and degrading activities toSalmonella typhi, strain ty2-4446 and 0-901 and toSalmonella enteritidis of guinea pig macrophages obtained from peritoneal exudate, spleen and bone marrow that were cultivated for 2–7 days, were studied. The phagocytic activity was expressed as a total number of phagocytosed microbes and the number of viable bacteria, released from mechanically disrupted macrophages. The ratio of phagocytosed bacteria to the original number of bacteria that were introduced to macrophage cultures, were evaluated in per cents. No significant difference in phagocytic activity was found between macrophages submitted to thein vitro cultivation and macrophages freshly isolated from the organism. Profound variations in phagocytic activity of cells were found which were partially dependent on the dose of microbes employed for the infection of cultures. Furthermore, both the engulfing and bactericidal activity of peritoneal macrophages toSalmonella typhi were found to be higher than in bone morrow macrophages.Salmonella typhi 0-901 microbes were phagocytosed by macrophages from bone marrow and peritoneal exudate much better thanSalmonella typhi ty2. In addition, a significant delay in bactericidal activity toSalmonella typhi ty2 of bone marrow macrophages in comparison to peritoneal macrophages was observed. The spleen macrophages possessed better phagocytic and killing activity toSalmonella enteritidis than bone marrow macrophages. A striking difference was found as regards the intracellular growth ofSalmonella typhi andSalmonella gertneri: no multiplication ofSalmonella typhi within the peritoneal and bone marrow macrophages was observed during the 3–5 h cultivation, whereas on the other hand,Salmonella gertneri started to grow intracellularly within the 5 h cultivation in the bone marrow macrophages.  相似文献   

12.

Introduction

Apoptosis has been reported to occur in the intervertebral disc. Elsewhere in the body, apoptotic cells are cleared from the system via phagocytosis by committed phagocytes such as macrophages, reducing the chance of subsequent inflammation. These cells, however, are not normally present in the disc. We investigated whether disc cells themselves can be induced to become phagocytic and so have the ability to ingest and remove apoptotic disc cells, minimising the damage to their environment.

Method

Bovine nucleus pulposus cells from caudal intervertebral discs were grown in culture and exposed to both latex particles (which are ingested by committed phagocytes) and apoptotic cells. Their response was monitored via microscopy, including both fluorescent and video microscopy, and compared with that seen by cell lines of monocytes/macrophages (THP-1 and J774 cells), considered to be committed phagocytes, in addition to a nonmacrophage cell line (L929 fibroblasts). Immunostaining for the monocyte/macrophage marker, CD68, was also carried out.

Results

Disc cells were able to ingest latex beads at least as efficiently, if not more so, than phagocytic THP-1 and J774 cells. Disc cells ingested a greater number of beads per cell than the committed phagocytes in a similar time scale. In addition, disc cells were able to ingest apoptotic cells when cocultured in monolayer with a UV-treated population of HeLa cells. Apoptotic disc cells, in turn, were able to stimulate phagocytosis by the committed macrophages. CD68 immunostaining was strong for THP-1 cells but negligible for disc cells, even those that had ingested beads.

Conclusion

In this study, we have shown that intervertebral disc cells are capable of behaving as competent phagocytes (that is, ingesting latex beads) and apoptotic cells. In terms of number of particles, they ingest more than the monocyte/macrophage cells, possibly due to their greater size. The fact that disc cells clearly can undergo phagocytosis has implications for the intervertebral disc in vivo. Here, where cell death is reported to be common yet there is normally no easy access to a macrophage population, the endogenous disc cells may be encouraged to undergo phagocytosis (for example, of neighbouring cells within cell clusters).  相似文献   

13.
The data on the effect of a peptide from the squid optic ganglia named gangliin on some parameters of animal natural resistance are presented. It was shown that the prophylactic use of the peptide in mice 24 hours before their contamination with the lethal dose of E. coli protected 40 to 60 per cent of the animals from death. Gangliin accelerated elimination of E. coli from the host and increased the absorptive and digestive activity of the macrophages and polymorphonuclear leukocytes. With the use of gangliin it was possible to correct the phagocytosis defects in infectious processes having the phagocytic protection mechanism. Moreover, gangliin was supposed to be efficient in control of long-term persistence of various microbes in the cells of the system of mononuclear phagocytes.  相似文献   

14.
In this paper we optimize a flow cytometric method for evaluating the phagocytic activity of leucocytes in gilthead seabream (Sparus aurata L.) and characterize the phagocytic cells observed. Optimal conditions were established for the fluorescein-labelling and analysis of the bacterium Vibrio anguillarum by flow cytometry. Head-kidney leucocytes were incubated with the heat-killed fluorescein isothiocyanate (FITC)-labelled bacteria for different periods, during which the kinetics of phagocytosis was studied. Attached and interiorized bacteria were distinguished. Although phagocytic ability reached a maximum after 60 min, phagocytic capacity reached its maximum at 20 min. The amount of ingested bacteria per phagocyte was estimated from the mean fluorescence of the leucocytes. Cytochalasin B or colchicine was used to inhibit phagocytosis. Monocyte-macrophages and acidophilic granulocytes showed phagocytic activity as demonstrated by transmission electron microscopy. In conclusion, the technique presented allows the screening of thousands of cells, and individual cell evaluation, by quantifying interiorized particles in fish phagocytes. Our ultrastructural results demonstrate that V. anguillarum is actively phagocytized by seabream macrophages and acidophilic granulocytes.  相似文献   

15.
Zhou Z  Yu X 《Trends in cell biology》2008,18(10):474-485
In metazoan organisms, cells undergoing apoptosis are rapidly engulfed and degraded by phagocytes. Defects in apoptotic-cell clearance result in inflammatory and autoimmune responses. However, little is known about how apoptotic-cell degradation is initiated and regulated and how different phagocytic targets induce different immune responses from their phagocytes. Recent studies in mammalian systems and invertebrate model organisms have led to major progress in identifying new factors involved in the maturation of phagosomes containing apoptotic cells. These studies have delineated signaling pathways that promote the sequential incorporation of intracellular organelles to phagosomes and have also discovered that phagocytic receptors produce the signals that initiate phagosome maturation. Here, we discuss these exciting new findings, focusing on the mechanisms that regulate the interactions between intracellular organelles and phagosomes.  相似文献   

16.
Regulation of cytokine production during phagocytosis of apoptotic cells   总被引:11,自引:0,他引:11  
Chung EY  Kim SJ  Ma XJ 《Cell research》2006,16(2):154-161
  相似文献   

17.
The proper removal of superfluous neurons through apoptosis and subsequent phagocytosis is essential for normal development of the central nervous system (CNS). During Drosophila embryogenesis, a large number of apoptotic neurons are efficiently engulfed and degraded by phagocytic glia. Here we demonstrate that glial proficiency to phagocytose relies on expression of phagocytic receptors for apoptotic cells, SIMU and DRPR. Moreover, we reveal that the phagocytic ability of embryonic glia is established as part of a developmental program responsible for glial cell fate determination and is not triggered by apoptosis per se. Explicitly, we provide evidence for a critical role of the major regulators of glial identity, gcm and repo, in controlling glial phagocytic function through regulation of SIMU and DRPR specific expression. Taken together, our study uncovers molecular mechanisms essential for establishment of embryonic glia as primary phagocytes during CNS development.  相似文献   

18.
Kurant E  Axelrod S  Leaman D  Gaul U 《Cell》2008,133(3):498-509
The removal of apoptotic cells by phagocytic neighbors is essential for metazoan development but remains poorly characterized. Here we report the discovery of a Drosophila phagocytosis receptor, Six-microns-under (SIMU), which is expressed in highly phagocytic cell types during development and required for efficient apoptotic cell clearance by glia in the nervous system and by macrophages elsewhere. SIMU is part of a conserved family of proteins that includes CED-1 and Draper (DRPR). Phenotypic analysis reveals that simu acts upstream of drpr in the same pathway and affects the recognition and engulfment of apoptotic cells, while drpr affects their subsequent degradation. SIMU strongly binds to apoptotic cells, presumably through its EMILIN-like domain, but requires no membrane anchoring, suggesting that it can function as a bridging molecule. Our study introduces an important factor in tissue-resident apoptotic clearance and underscores the prominent role of glia as "semiprofessional" phagocytes in the nervous system.  相似文献   

19.
By studying the effects of whole-body X irradiation on phagocytosis, a correlation between the metabolic and bactericidal activities of leukocytes following X irradiation was demonstrated. The total nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) content of polymorphonuclear neutrolphils (PMN) isolated from irradiated guinea pigs increased significantly when compared to nonirradiated controls. The ratio of unreduced to reduced (NAD) generally increased in PMN isolated from irradiated animals. This occurred with both resting and phagocytizing cells. The ratio of unreduced to reduced NADP of resting PMN isolated from irradiated animals had a tendency to increase. However, in phagocytizing cells a significant decrease in the ratio was noted. The total acid and alkaline phosphatase and beta-glucuronidase increased up to about 10 days postirradiation. These lysosomal enzymes returned to approximately normal by the 17th day postirradiation. All three lysosomal enzymes (acid and alkaline phosphatases and beta-glucuronidase) were released from the granules at a significantly faster rate during phagocytosis after irradiation. The bactericidal activities of PMN isolated from irradiated animals gradually decreased, and in some cases increased growth of the organisms was observed. The uptake or association of bacteria with PMN isolated from irradiated animals varied with the postirradiation time. Generally, a correlation with bactericidal activities could be made. The data indicate that the bactericidal system in phagocytes consists of at least two agents, H(2)O(2) and myeloperoxidase.  相似文献   

20.
Apoptotic cell phagocytosis is initiated through the specific interaction between markers for phagocytosis present at the surface of targets and their receptors of phagocytes. Although many molecules have been proposed to be phagocytosis markers and receptors in mammals, information as to the identity of those molecules is limited for invertebrate animals. Calreticulin, a molecular chaperone that functions in the lumen of the endoplasmic reticulum, was recently reported to be the second general marker, the membrane phospholipid phosphatidylserine being the first, for mammalian apoptotic cells to be recognized by phagocytes. We here asked whether or not calreticulin serves as a marker for phagocytosis in Drosophila. Phagocytosis of apoptotic S2 cells by Drosophila hemocyte-derived l(2)mbn cells, which we previously showed to occur independent of phosphatidylserine, was inhibited by the addition of anti-calreticulin antibody. This inhibition was observed when the target cells, but not phagocytes, were pre-incubated with the antibody. In addition, RNA interference-mediated reduction of calreticulin expression in apoptotic S2 cells, but not in l(2)mbn cells, reduced the level of phagocytosis. An immunocytochemical analysis revealed that calreticulin is widely distributed at the surface of viable S2 cells. After the induction of apoptosis, cell surface calreticulin seemed to form aggregates, with no change in its amount. Furthermore, in embryos of a mutant Drosophila strain that expresses calreticulin at a reduced level, the level of phagocytosis of apoptotic cells was about a half of that observed in embryos of a wild-type strain. These results collectively indicate that calreticulin is the first molecule to be identified as a marker for phagocytosis of apoptotic cells by Drosophila phagocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号