首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Endothelin-1 (ET-1) is a potent mitogen for many cells, especially when its levels are elevated under pathological conditions, as seen in tumor cell progression and astroglial activation in neuropathies. While ET-1 is known to cause astroglial proliferation, in the present study, multiple signaling pathways involved in ET-1-mediated astrocyte proliferation were characterized. Treatment with PD98059 and U0126 (MEK inhibitors) inhibited not only ET-1-induced cell proliferation but also ET-1-activated phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) in U373MG astrocytoma cells. Whereas the nonselective protein kinase C (PKC) inhibitor chelerythrine attenuated ET-1-induced cell proliferation, it was unable to block ET-1-induced ERK phosphorylation. However, ET-1 did not activate conventional or novel PKCs and did not elevate intracellular calcium. In addition, U73122 (a selective phospholipase C inhibitor), FTI-277 (an H-Ras inhibitor), as well as protein tyrosine kinase inhibitors also did not abolish ET-1-induced ERK1/2 phosphorylation. ET-1 treatment increased the activity of total Ras but not H-Ras. The phosphoinositide 3-kinase (PI3K) pathway appeared to be involved in signal transduction induced by ET-1, but it did not appear to participate in cross talk with the mitogen-activated protein kinase (MAPK) pathway. Activated ET receptors did not propagate signals either through protein tyrosine kinases or transactivation of EGF receptor tyrosine kinases, which typically trigger Ras-Raf-MAPK pathways. The results indicate that ET-1 stimulates cell proliferation by the activation of MAPK-, PKC-, and PI3K-dependent pathways that appear to function in a parallel manner. There is no apparent, direct "cross talk" between these pathways in U373MG cells, but rather, they might act on the independent but necessary components of the mitogenic effects of ET-1.  相似文献   

2.
The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection.  相似文献   

3.
Stromal cell-derived factor-1 (SDF-1), the ligand of the CXCR4 receptor, is a chemokine involved in chemotaxis and brain development that also acts as co-receptor for HIV-1 infection. We previously demonstrated that CXCR4 and SDF-1alpha are expressed in cultured type-I cortical rat astrocytes, cortical neurones and cerebellar granule cells. Here, we investigated the possible functions of CXCR4 expressed in rat type-I cortical astrocytes and demonstrated that SDF-1alpha stimulated the proliferation of these cells in vitro. The proliferative activity induced by SDF-1alpha in astrocytes was reduced by PD98059, indicating the involvement of extracellular signal-regulated kinases (ERK1/2) in the astrocyte proliferation induced by CXCR4 stimulation. This observation was further confirmed showing that SDF-1alpha treatment selectively activated ERK1/2, but not p38 or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK). Moreover, both astrocyte proliferation and ERK1/2 phosphorylation, induced by SDF-1alpha, were inhibited by pertussis toxin (PTX) and wortmannin treatment indicating the involvement of a PTX sensitive G-protein and of phosphatidyl inositol-3 kinase in the signalling of SDF-1alpha. In addition, Pyk2 activation represent an upstream components for the CXCR4 signalling to ERK1/2 in astrocytes. To our knowledge, this is the first report demonstrating a proliferative effect for SDF-1alpha in primary cultures of rat type-I astrocytes, and showing that the activation of ERK1/2 is responsible for this effect. These data suggest that CXCR4/SDF-1 should play an important role in physiological and pathological glial proliferation, such as brain development, reactive gliosis and brain tumour formation.  相似文献   

4.
5.
6.
Our previous data indicated that hypoxic preconditioning (HPC) ameliorates transient global cerebral ischemia (tGCI)-induced neuronal death in hippocampal CA1 subregion of adult rats. However, the possible molecular mechanisms for neuroprotection of this kind are largely unknown. This study was performed to investigate the role of the mitogen-activated protein kinase/extra-cellular signal-regulated kinase kinase (MEK)/extra-cellular signal-regulated kinase (ERK) pathway in HPC-induced neuroprotection. tGCI was induced by applying the four-vessel occlusion method. Pretreatment with 30 min of hypoxia applied 1 day before 10 min tGCI significantly decreased the level of MEK1/2 and ERK1/2 phosphorylation in ischemic hippocampal CA1 subregion. Also, HPC decreased the expression of phosphorylated ERK1/2 in degenerating neurons and astrocytes. However, the administration of U0126, a MEK kinase inhibitor, partly blocked MEK1/2 and ERK1/2 phosphorylation induced by tGCI. Meanwhile, neuronal survival was improved, and glial cell activation was significantly reduced. Collectively, these data indicated that the MEK/ERK signaling pathway might be involved in HPC-induced neuroprotection following tGCI. Also, HPC resulted in a reduction of glial activation.  相似文献   

7.
The chemokine receptor CXCR4-mediated signaling cascades play an important role in cell proliferation and migration, but the underlying mechanisms by which the receptor signaling is regulated remain incompletely understood. Here, we demonstrate that CXCR4 was co-immunoprecipitated with cyclophilin A (CyPA) from the lysate of HEK293 cells stably expressing CXCR4. Although both the glutathione S-transferase-CXCR4 N- and C-terminal fusion proteins were associated with the purified CyPA, truncation of the C-terminal domain of CXCR4 robustly inhibited the receptor co-immunoprecipitation with CyPA in intact cells, thereby suggesting a critical role of the receptor C terminus in this interaction. Ligand stimulation of CXCR4 induced CyPA phosphorylation and nuclear translocation, both of which were inhibited by truncation of the C-terminal domain of CXCR4. CyPA was associated with transportin 1, and knockdown of transportin 1 by RNA interference (RNAi) blocked CXCL12-induced nuclear translocation of CyPA, thereby suggesting a transportin 1-mediated nuclear import of CyPA. CyPA formed a complex with heterogeneous nuclear ribonucleoprotein (hnRNP) A2, which underwent nuclear export in response to activation of CXCR4. Interestingly, the CXCR4-mediated nuclear export of hnRNP A2 was blocked by RNAi of CyPA. Moreover, CXCR4-evoked activation of extracellular signal-regulated kinase 1/2 (ERK1/2) was attenuated by CyPA RNAi, by overexpression of a PPIase-deficient mutant of CyPA (CyPA-R55A), and by pretreatment of the immunosuppressive drugs, cyclosporine A and sanglifehrin A. Finally, CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 or Jurkat T cells was inhibited by CyPA RNAi or CsA treatment.  相似文献   

8.
Endothelin (ET)-1 is a mitogenic factor in numerous cell types, including rat myometrial cells. In the present study, we investigated the potential role of ET-1 in the proliferation of tumoral uterine smooth muscle cells (ELT-3 cells). We found that ET-1 exerted a more potent mitogenic effect in ELT-3 cells than in normal myometrial cells, as indicated by the increase in [3H]thymidine incorporation, cell number, and bromodeoxyuridine incorporation. The ET-1 was more efficient than platelet-derived growth factor and epidermal growth factor to stimulate proliferation. The ET-1-mediated cell proliferation was inhibited in the presence of U0126, a specific inhibitor of (mitogen-activated protein kinase ERK kinase), indicating that extracellular signal-regulated kinase (ERK) activation is involved. Additionally, ET-1 induced the activation of phospholipase (PL) D, leading to the synthesis of phosphatidic acid (PA). The ET-1-induced activation of PLD was twofold higher in ELT-3 cells compared to that in normal cells. The two cell types expressed mRNA for PLD1a and PLD2, whereas PLD1b was expressed only in ELT-3 cells. The exposure of cells to butan-1-ol reduced ET-1-mediated production of PA by PLD and partially inhibited ERK activation and DNA synthesis. Addition of exogenous PLD or PA in the medium reproduced the effect of ET-1 on ERK activation and cell proliferation. Collectively, these data indicate that ET-1 is a potent mitogenic factor in ELT-3 cells via a signaling pathway involving a PLD-dependent activation of ERK. This highlights the potential role of ET-1 in the development of uterine leiomyoma, and it reinforces the role of PLD in tumor growth.  相似文献   

9.
Chemokine receptors pivotal for human immunodeficiency virus type 1 (HIV-1) infection in lymphocytes and macrophages (CCR3, CCR5, and CXCR4) are expressed on neural cells (microglia, astrocytes, and/or neurons). It is these cells which are damaged during progressive HIV-1 infection of the central nervous system. We theorize that viral coreceptors could effect neural cell damage during HIV-1-associated dementia (HAD) without simultaneously affecting viral replication. To these ends, we studied the ability of diverse viral strains to affect intracellular signaling and apoptosis of neurons, astrocytes, and monocyte-derived macrophages. Inhibition of cyclic AMP, activation of inositol 1,4,5-trisphosphate, and apoptosis were induced by diverse HIV-1 strains, principally in neurons. Virions from T-cell-tropic (T-tropic) strains (MN, IIIB, and Lai) produced the most significant alterations in signaling of neurons and astrocytes. The HIV-1 envelope glycoprotein, gp120, induced markedly less neural damage than purified virions. Macrophage-tropic (M-tropic) strains (ADA, JR-FL, Bal, MS-CSF, and DJV) produced the least neural damage, while 89.6, a dual-tropic HIV-1 strain, elicited intermediate neural cell damage. All T-tropic strain-mediated neuronal impairments were blocked by the CXCR4 antibody, 12G5. In contrast, the M-tropic strains were only partially blocked by 12G5. CXCR4-mediated neuronal apoptosis was confirmed in pure populations of rat cerebellar granule neurons and was blocked by HA1004, an inhibitor of calcium/calmodulin-dependent protein kinase II, protein kinase A, and protein kinase C. Taken together, these results suggest that progeny HIV-1 virions can influence neuronal signal transduction and apoptosis. This process occurs, in part, through CXCR4 and is independent of CD4 binding. T-tropic viruses that traffic in and out of the brain during progressive HIV-1 disease may play an important role in HAD neuropathogenesis.  相似文献   

10.
ATP, acting via P2Y, G protein-coupled receptors (GPCRs), is a mitogenic signal and also synergistically enhances fibroblast growth factor-2 (FGF-2)-induced proliferation in astrocytes. Here, we have examined the effects of ATP and FGF-2 cotreatment on the main components of the extracellular-signal regulated protein kinase (ERK) cascade, cRaf-1, MAPK/ERK kinase (MEK) and ERK, key regulators of cellular proliferation. Surprisingly, ATP inhibited activation of cRaf-1 by FGF-2 in primary cultures of rat cortical astrocytes. The inhibitory effect did not diminish MEK and ERK activation; indeed, cotreatment resulted in a greater initial activation of ERK. ATP inhibition of cRaf-1 activation was not mediated by an increase in cyclic AMP levels or by protein kinase C activation. ATP also inhibited the activation of cRaf-1 by other growth factors, epidermal growth factor and platelet-derived growth factor, as well as other MEK1 activators stimulated by FGF-2, MEK kinase 1 (MEKK1) and MEKK2. Serotonin, an agonist of another GPCR coupled to ERK, did not inhibit FGF-2-induced cRaf-1 activation, thereby indicating specificity in the ATP-induced inhibitory cross-talk. These findings suggest that ATP stimulates an inhibitory activity that lays upstream of MEK activators and inhibits growth factor-induced activation of cRaf-1 and MEKKS: Such a mechanism might serve to integrate the actions of receptor tyrosine kinases and P2Y-GPCRS:  相似文献   

11.
Endothelin-1 (ET-1), a member of a family of 21 amino acid peptides possessing vasoconstrictor properties, is known to stimulate mesangial cell proliferation. In this study, ET-1 (100 nm) induced a rapid activation of p21(ras) in human glomerular mesangial cells (HMC). Inhibition of Src family tyrosine kinase activation with [4-Amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine] or chelation of intracellular free calcium with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester significantly decreased ET-1dependent p21(ras) activation and suggested the involvement of the cytoplasmic proline-rich tyrosine kinase Pyk2. We have observed that Pyk2 was expressed in HMC and was tyrosine-phosphorylated within 5 min of ET-1 treatment. ET-1-induced activation of Pyk2 was further confirmed using phospho-specific anti-Pyk2 antibodies. Surprisingly, Src kinase activity was required upstream of ET-1-induced autophosphorylation of Pyk2. To determine whether Pyk2 autophosphorylation mediated ET-1-dependent p21(ras) activation, adenovirus-mediated transfer was employed to express a dominant-negative form of Pyk2 (CRNK). CRNK expression inhibited ET-1-induced endogenous Pyk2 autophosphorylation, but did not abolish ET-1-mediated increases in GTP-bound p21(ras) levels. ET-1-induced activation of the p38 MAPK (but not ERK) pathway was inhibited in HMC and in rat glomerular mesangial cells expressing the dominant-negative form of Pyk2. These findings suggest that the engagement of Pyk2 is important for ET-1-mediated p38 MAPK activation and hence the biological effect of this peptide in mesangial cells.  相似文献   

12.
We have previously shown that the mitogenic effect of endothelin-1 (ET-1) in primary astrocytes is dependent on activation of both extracellular signal-regulated kinase (ERK)- and cytoskeleton (CSK)-dependent pathways. In this study, we evaluated the contribution of each of these pathways to the expression and activation of proteins mediating cell cycle progression. Our results suggest that ET-1-induced expression of cyclins D1 and D3 is dependent on the ERK- and CSK-dependent pathways, respectively; moreover, a decrease in the levels of the cyclin-dependent kinase inhibitor (CKI) p27 was observed as a consequence of ERK activation. Expression of both cyclins D1 and D3 together with a decrease in the p27 levels are essential for retinoblastoma protein (pRB) phosphorylation and cyclin A expression. Furthermore, the molecular events responsible for cell-cell contact inhibition of astrocyte proliferation were found to be independent of the mitogenic pathways leading to D-type cyclin expression. Cell growth arrest in confluent astrocytes was found to be correlated with increased expression of CKI p21, resulting in inhibition of D-type cyclin-associated pRB phosphorylation and cyclin A expression. Taken together, these results indicate that cyclins D1 and D3, which constitute the key mediators of the proliferative response of primary astrocytes to ET-1, are regulated by distinct signaling pathways.  相似文献   

13.
Effects of MAP kinase cascade inhibitors on the MKK5/ERK5 pathway   总被引:24,自引:0,他引:24  
Mody N  Leitch J  Armstrong C  Dixon J  Cohen P 《FEBS letters》2001,502(1-2):21-24
Antibodies that recognise the active phosphorylated forms of mitogen-activated protein kinase (MAPK) kinase 5 (MKK5) and extracellular signal-regulated kinase 5 (ERK5) in untransfected cells have been exploited to show that the epidermal growth factor (EGF)-induced activation of MKK5 and ERK5 occurs subsequent to the activation of ERK1 and ERK2 in HeLa cells. The drugs U0126 and PD184352, which prevent the activation of MKK1 (and hence the activation of ERK1/ERK2), also prevent the activation of MKK5, although higher concentrations are required. Our studies define physiological targets of the MKK5/ERK5 pathway as proteins whose phosphorylation is largely prevented by 10 microM PD184352, but unaffected by 2 microM PD184352. Surprisingly, 2 microM PD184352 prolongs the activation of MKK5 and ERK5 induced by EGF or H(2)O(2), indicating negative control of the MKK5/ERK5 pathway by the classical MAPK cascade. Our results also indicate that ERK5 is not a significant activator of MAPK-activated protein kinase-1/RSK in HeLa cells.  相似文献   

14.
G protein-coupled receptors (GPCRs) such as angiotensin II, bradykinin and endothelin-1 (ET-1) are critically involved in the regulation of adrenal function, including aldosterone production from zona glomerulosa cells. Whereas, substantial data are available on the signaling mechanisms of ET-1 in cardiovascular tissues, such information in adrenal glomerulosa cells is lacking. Bovine adrenal glomerulosa (BAG) cells express receptors for endothelin-1 (ET-1) and their stimulation caused phosphorylation of Src (at Tyr416), proline-rich tyrosine kinase (Pyk2 at Tyr402), extracellularly regulated signal kinases (ERK1/2), and their dependent proteins, p90 ribosomal S6 kinase (RSK-1) and CREB. ET-1 elicited these responses predominantly through activation of a Gi-linked cascade with a minor contribution from the Gq/PKC pathway. Whereas, selective inhibition of EGF-R kinase with AG1478 caused complete inhibition of EGF-induced ERK/RSK-1/CREB activation, it caused only partial reduction (30–40%) of such ET-1-induced responses. Consistent with this, inhibition of matrix metalloproteinases (MMPs) with GM6001 reduced ERK1/2 activation by ET-1, consistent with partial involvement of the MMP-dependent EGF-R activation in this cascade. Activation of ERK/RSK-1/CREB by both ET-1 and EGF was abolished by inhibition of Src, indicating its central role in ET-1 signaling in BAG cells. Moreover, the signaling characteristics of ET-1 in cultured BAG cells closely resembled those observed in clonal adrenocortical H295R cells. The ET-1-induced proliferation of BAG and H295 R cells was much smaller than that induced by Ang II or FGF. These data demonstrate that ET-1 causes ERK/RSK-1/CREB phosphorylation predominantly through activation of Gi and Src, with a minor contribution from MMP-dependent EGF-R transactivation.  相似文献   

15.
Human immunodeficiency virus type 1 (HIV-1) can establish latent infection following provirus integration into the host genome. NF-kappaB plays a critical role in activation of HIV-1 gene expression by cytokines and other stimuli, but the signal transduction pathways that regulate the switch from latent to productive infection have not been defined. Here, we show that ERK1/ERK2 mitogen-activated protein kinase (MAPK) plays a central role in linking signals at the cell surface to activation of HIV-1 gene expression in latently infected cells. MAPK was activated by cytokines and phorbol 12-myristate 13-acetate in latently infected U1 cells. The induction of HIV-1 expression by these stimuli was inhibited by PD98059 and U0126, which are specific inhibitors of MAPK activation. Studies using constitutively active MEK or Raf kinase mutants demonstrated that MAPK activates the HIV-1 long terminal repeat (LTR) through the NF-kappaB sites. Most HIV-1 inducers activated NF-kappaB via a MAPK-independent pathway, indicating that activation of NF-kappaB is not sufficient to explain the activation of HIV-1 gene expression by MAPK. In contrast, all of the stimuli activated AP-1 via a MAPK-dependent pathway. NF-kappaB and AP-1 components c-Fos and c-Jun were shown to physically associate by yeast two-hybrid assays and electrophoretic mobility shift assays. Coexpression of NF-kappaB and c-Fos or c-Jun synergistically transactivated the HIV-1 LTR through the NF-kappaB sites. These studies suggest that MAPK acts by stimulating AP-1 and a subsequent physical and functional interaction of AP-1 with NF-kappaB, resulting in a complex that synergistically transactivates the HIV-1 LTR. These results define a mechanism for signal-dependent activation of HIV-1 replication in latently infected cells and suggest potential therapeutic strategies for unmasking latent reservoirs of HIV-1.  相似文献   

16.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

17.
G Müller  M Lipp 《Biological chemistry》2001,382(9):1387-1397
The human chemokine receptors CXCR5 and CXCR1 activate signaling pathways via pertussis toxin-sensitive as well as insensitive G proteins. CXCR5 induces Ca2+ signaling and chemotaxis independently of inhibitory G proteins, whereas the same signaling pathways are entirely dependent on inhibitory G proteins for CXCR1. In contrast, activation of the MAP kinase cascade via ERK1/2 is a pertussis toxin-sensitive signaling event for both receptors. Using chimeric CXCR1/CXCR5 receptors we investigated structural requirements for the activation of signal transduction pathways by CXCR5. Individual or multiple intracellular domains of CXCR1 were exchanged for the corresponding sequences of CXCR5, leading to receptors resembling CXCR5 at the cytoplasmic surface to a varying extent. Replacing the second intracellular domain of CXCR1 had a major influence on signaling mediated by inhibitory G proteins, whereas the exchange of the third or carboxy-terminal intracellular domain had only minor effects on signal transduction. Activation of the MAP kinase cascade via ERK1/2 and chemotaxis are largely reduced in chimeras comprising the second intracellular domain of CXCR5, although coupling to inhibitory G proteins is retained in all chimeric receptors. In summary, these data characterize the contribution of the intracellular domains of CXCR5 to receptor signaling, thereby disclosing unique structural requirements that modulate G protein coupling by the receptor.  相似文献   

18.
Endothelin-1 (ET-1) affects glucose uptake in adipocytes and may play an important role in adipose physiology. One of the principal functions of adipose tissue is the provision of energy substrate through lipolysis. In the present study, we investigated the effects of ET-1 on lipolysis in 3T3-L1 adipocytes. When glycerol release in the culture medium was measured as an index of lipolysis, the results showed that ET-1 caused a significant increase that was time and dose dependent. With a concentration of 10 nM ET-1, stimulation of glycerol release plateaued after 4 h of exposure. This effect was inhibited by the ETA receptor antagonist BQ-610 (10 microM) but not by the ETB receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the cAMP-dependent protein kinase A-mediated, phospholipase A2 (PLA2)-mediated, protein kinase C (PKC)-mediated, phosphatidylinositol 3 (PI 3)-kinase-mediated, and the mitogen-activated protein kinase (MAPK)-mediated pathways. Inhibition of adenylyl cyclase activation by SQ-22536 (100 microM) did not block ET-1-induced lipolysis. Pretreatment of adipocytes with the PLA2 inhibitor dexamethasone (100 nM), the PKC inhibitor H-7 (6 microM), or the PI 3-kinase inhibitor wortmannin (100 nM) also had no effect. ET-1-induced lipolysis was blocked by inhibition of extracellular signal-regulated kinase (ERK) activation using PD-98059 (75 microM), whereas a p38 MAPK inhibitor (SB-203580; 20 microM) had no effect. Results of Western blot further demonstrated that ET-1 induced ERK phosphorylation. These data show that ET-1 induces lipolysis in 3T3-L1 adipocytes via a pathway that is different from the conventional cAMP-dependent pathway used by isoproterenol and that involves ERK activation.  相似文献   

19.
The peptide, endothelin-1 (ET-1) regulates proliferative responses in numerous cell types. Recently, a dual ET receptor antagonist was shown to prevent the increase in airway smooth muscle cell (SMC) proliferation that accompanies airway smooth muscle remodeling in a rat model of experimental asthma. Thus, we used [(3)H]-thymidine incorporation assays and western immunoblotting to identify signaling pathways that regulate proliferative responses in cultured rat tracheal SMC. Our data indicate that ET-1 activation of the ET A receptor subtype induced [(3)H]-thymidine incorporation and activation of ERK 1/2 in primary rat tracheal SMC. ET-1-induced [(3)H]-thymidine incorporation and activation of ERK 1/2 were inhibited by pretreatment of SMC with pertussis toxin or down regulation of phorbol ester responsive isoforms of PKC. While ET- 1-induced ERK 1/2 activation was unaffected following inhibition of Rho kinase, ET-1-induced [(3)H]-thymidine incorporation was abrogated. ET-1 also potentiated [(3)H]-thymidine incorporation as well as cell proliferation of SMC stimulated with PDGF-BB and this response did not appear to be regulated by ERK1/ 2. These data demonstrate that ET-1 induces activation of multiple G proteins that regulate rat tracheal SMC proliferative responses, likely through signaling pathways downstream of ERK1/2 and Rho kinase.  相似文献   

20.
The extracellular signal-regulated kinase (ERK) pathway is activated by hypertrophic stimuli in cardiomyocytes. However, whether ERK plays an essential role or is implicated in all major components of cardiac hypertrophy remains controversial. Using a selective MEK inhibitor, U0126, and a selective Raf inhibitor, SB-386023, to block the ERK signaling pathway at two different levels and adenovirus-mediated transfection of dominant-negative Raf, we studied the role of ERK signaling in response of cultured rat cardiomyocytes to hypertrophic agonists, endothelin-1 (ET-1), and phenylephrine (PE). U0126 and SB-386023 blocked ET-1 and PE-induced ERK but not p38 and JNK activation in cardiomyocytes. Both compounds inhibited ET-1 and PE-induced protein synthesis and increased cell size, sarcomeric reorganization, and expression of beta-myosin heavy chain in myocytes with IC(50) values of 1-2 microm. Furthermore, both inhibitors significantly reduced ET-1- and PE-induced expression of atrial natriuretic factor. In cardiomyocytes transfected with a dominant-negative Raf, ET-1- and PE-induced increase in cell size, sarcomeric reorganization, and atrial natriuretic factor production were remarkably attenuated compared with the cells infected with an adenovirus-expressing green fluorescence protein. Taken together, our data strongly support the notion that the ERK signal pathway plays an essential role in ET-1- and PE-induced cardiomyocyte hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号