首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The grape is a matrix rich in bioactive compounds and its production generates large quantities of by-products, such as grape stems, which, to date, present low commercial value. However, there is a growing interest in the application of this material as a source of phenolic compounds. Therefore, the present study aims at assessing the phytochemical profile of (poly)phenolic extracts of white Portuguese grape stem varieties produced in the Região Demarcada do Douro (Portugal). The antioxidant activity determined by several assays, as well as the antimicrobial activity using the disc diffusion method against human gastrointestinal pathogenic bacteria of the hydromethanolic extracts, were evaluated. This work presents very positive results as the rich composition in phenolic compounds (94.71–123.09 mg GA−1 and 0.02–73.79 mg g−1 for the total phenol content and for individual phenolics, respectively) presented by grape stems can explain the high antioxidant (0.37–1.17 mmol Trolox g−1) and antimicrobial activities against, essentially, Gram-positive bacteria, and in some cases with higher efficacy than commercial antibiotics. Thus, demonstrating that this wine by-product should deserve greater attention from the pharmaceutical industries due to its excellent biological properties and characteristics not yet applied.  相似文献   

2.
乙醇对‘木纳格’葡萄采后贮藏期间品质的影响   总被引:4,自引:0,他引:4  
葡萄采收后分别用不同浓度乙醇处理放在低温下贮藏,测定其品质指标的结果表明:40%的乙醇能有效控制葡萄果实的腐烂,对果实可溶性固形物含量则无影响,还可减缓果实硬度和可滴定酸含量下降,以及抑制细胞膜透性的增加,从而提高果实的贮藏品质。  相似文献   

3.
The grapevine (Vitis vinifera L. cv. Riesling) plants subjected to water deficit were studied for changes in relative water content (RWC), leaf dry mass, contents of chlorophyll (Chl), total leaf proteins, free amino acids, and proline, and activities of ribulose-1,5-bisphosphate carboxylase (RuBPC), nitrate reductase (NR), and protease. In water-stressed plants RWC, leaf dry matter, Chl content, net photosynthetic rate (P N), and RuBPC and NR activities were significantly decreased. The total leaf protein content also declined with increase in the accumulation of free amino acids. Concurrently, the protease activity in the tissues was also increased. A significant two-fold increase in proline content was recorded.  相似文献   

4.
The impact of powdery (Uncinula necator) and downy mildew (Plasmopara viticola) on grapevine leaf gas exchange was analysed. Gas exchange measurements (assimilation A, transpiration E, stomatal conductance gs, intercellular concentration of CO2Ci) were made on three different leaf materials: (i) healthy tissue of diseased leaves, (ii) infected tissue of diseased leaves, (iii) healthy tissue of healthy leaves (control treatment). Using the same source of leaf tissue, photosynthetic pigment concentration (chlorophyll a, b) and fluorescence levels (minimal fluorescence F0, maximal fluorescence Fm and the optimal quantum yield [Fm ? F0]/Fm) were determined to explain the mechanism of action of the two diseases on leaf assimilation. The results indicated that powdery and downy mildew reduced the assimilation rates, not only through a reduction in green leaf area (visual lesions), but also through an influence on gas exchange of the remaining green leaf tissues, determining a ‘virtual lesion’. The ratios between virtual and visual lesions were higher in powdery mildewed leaves than in the downy mildewed leaves. The photosynthetic fluorescence level (Fv/Fm) was affected by neither of the two pathogens. The reduction in intercellular concentration of CO2 and photosynthetic pigment may explain the lower assimilation rates in the healthy tissues of powdery and downy mildewed leaves respectively.  相似文献   

5.
We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane β -sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.  相似文献   

6.
In this study, the differences in the aroma compounds released after the free-run and pressed juices of cv. Emir grape (Vitis vinifera L.) were evaluated. Aroma compounds were obtained by liquid-liquid extraction with CH(2) Cl(2) , and then analyzed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). According to the results, pressing uniformly increased the levels of the aromatic constituents, but this treatment lowered the grape juice quality for winemaking by increasing the total phenolic compounds, browning index, and C(6) -alcohol levels (green-herbaceaous odor) as compared to the free-run juice. From all the aroma compounds identified in both juices, hexan-1-ol, (E)-hex-2-en-1-ol, isobutanol, isoamyl alcohol, and 2-phenylethanol were the most abundant volatile compounds.  相似文献   

7.

Background

The Eurasian grapevine (Vitis vinifera L.) is the most widely cultivated and economically important horticultural crop in the world. As a one of the origin area, Anatolia played an important role in the diversification and spread of the cultivated form V. vinifera ssp. vinifera cultivars and also the wild form V. vinifera ssp. sylvestris ecotypes. Although several biodiversity studies have been conducted with local cultivars in different regions of Anatolia, no information has been reported so far on the biochemical (organic acids, sugars, phenolic acids, vitamin C) and antioxidant diversity of local historical table V. vinifera cultivars grown in Igdir province. In this work, we studied these traits in nine local table grape cultivars viz. ‘Beyaz Kismis’ (synonym name of Sultanina or Thompson seedless), ‘Askeri’, ‘El Hakki’, ‘Kirmizi Kismis’, ‘Inek Emcegi’, ‘Hacabas’, ‘Kerim Gandi’, ‘Yazen Dayi’, and ‘Miskali’ spread in the Igdir province of Eastern part of Turkey.

Results

Variability of all studied parameters is strongly influenced by cultivars (P < 0.01). Among the cultivars investigated, ‘Miskali’ showed the highest citric acid content (0.959 g/l) while ‘Kirmizi Kismis’ produced predominant contents in tartaric acid (12.71 g/l). The highest glucose (16.47 g/100 g) and fructose (15.55 g/100 g) contents were provided with ‘Beyaz Kismis’. ‘Kirmizi Kismis’ cultivar had also the highest quercetin (0.55 mg/l), o-coumaric acid (1.90 mg/l), and caffeic acid (2.73 mg/l) content. The highest ferulic acid (0.94 mg/l), and syringic acid (2.00 mg/l) contents were observed with ‘Beyaz Kismis’ cultivar. The highest antioxidant capacity was obtained as 9.09 μmol TE g-1 from ‘Inek Emcegi’ in TEAC (Trolox equivalent Antioxidant Capacity) assay. ‘Hacabas’ cultivar had the highest vitamin C content of 35.74 mg/100 g.

Conclusions

Present results illustrated that the historical table grape cultivars grown in Igdir province of Eastern part of Turkey contained diverse and valuable sugars, organic acids, phenolic acids, Vitamin C values and demonstrated important antioxidant capacity for human health benefits. Further preservation and use of this gene pool will be helpful to avoid genetic erosion and to promote continued agriculture in the region.  相似文献   

8.
The effect of inoculation with selected Saccharomyces cerevisiae strains was studied on fermentation and flavor compounds of wines made from Vitis vinifera L. cv. Emir grown in Central Anatolia, Turkey. Flavor compounds were analysed and identified by GC-FID and GC-MS, respectively. The total concentrations of flavor compounds did not increase with the addition of indigenous and commercial wine yeasts, but differences were noted in individual volatile compounds. Cluster and factor analyses of flavor compounds also showed that wines produced were different depending on the wine strain used. Wines were completely fermented to less than 1.4 g/l residual sugar. Yeasts other than S. cerevisiae survived longer than previously reported. Inoculation with selected strains increased the ethanol level. Journal of Industrial Microbiology & Biotechnology (2002) 29, 28–33 doi:10.1038/sj.jim.7000258 Received 11 July 2001/ Accepted in revised form 27 March 2002  相似文献   

9.
Morphology, water relations, and xylem anatomy of high-light (sun)- and low-light (shade)-grown Vitis vinifera L. shoots were studied to determine the effects of shading on the hydraulic conductance of the pathway for water flow from the roots to the leaves. Shade shoots developed leaf area ratios (leaf area: plant dry weight) that were nearly threefold greater than sun shoots. Water-potential gradients (·m–1) in the shoot xylem accounted for most of the ·m–1 between soil and shoot apex at low and high transpiration rates in both sun and shade shoots, but the gradients were two- to fourfold greater in shade-grown plants. Low light reduced xylem conduit number in petioles, but had an additional slight effect on conduit diameter in internodes. The hydraulic conductance per unit length (Kh) and the specific hydraulic conductivity (ks, i.e. Kh per xylem cross-sectional area) of internodes, leaf petioles, and leaf laminae at different developmental stages leaf plastochron index was calculated from measurements of water potential and water flow in intact plants, from flow through excised organs, and from vessel and tracheid lumen diameters according to Hagen-Poiseuille's equation. For all methods and conductance parameters, the propensity to transport water to sink leaves was severalfold greater in internodes than in petioles. The Kh and ks increased logarithmically until growth ceased, independent of treatment and measurement method, and increased further in pressurized-flow experiments and Hagen-Poiseuille predictions. However, the increase was less in shade internodes than in sun internodes. Mature internodes of shade-grown plants had a two- to fourfold reduced Kh and significantly lower ks than sun internodes. Except very early in development, leaf lamina conductance and ks from shade-grown plants was also reduced. The strong reduction in Kh with only a slight reduction in leaf area (17% of sun shoots) in the shade shoots indicated a decoupling of water-transport capacity from the transpirational surface supplied by that capacity. This decoupling resulted in strongly reduced leaf specific conductivities and Huber values for both internodes and petioles, which may increase the likelihood of cavitation under conditions of high evaporative demand or soil drought.Abbreviations Ac total cross-sectional area (internodes, petioles, leaf laminae) - Ax xylem cross-sectional area - HV Huber value - Kh hydraulic conductance per unit length - ks specific hydraulic conductivity - LPI leaf plastochron index - LSC leaf specific conductivity - water potential - water-potential gradient - q volume flow of water per unit time Hans R. Schultz was supported in part by the Deutsche Forschungsgemeinschaft (grant Ki-114/8-1). We wish to thank Dr. Thomas Geier, Institut für Biologie, Forschungsanstalt D-6222 Geisenheim, Germany for his advice on sample preparation and microscopy, and two anonomous reviewers for their helpful comments.  相似文献   

10.
11.
12.
Neumann R  Iino M 《Planta》1997,201(3):288-292
Phototropism of rice (Oryza sativa L.) coleoptiles induced by unilateral blue light was characterized using red-light-grown seedlings. Phototropic fluence-response relationships, investigated mainly with submerged coleoptiles, revealed three response types previously identified in oat and maize coleoptiles: two pulse-induced positive phototropisms and a phototropism that depended on stimulation time. The effective ranges of fluences and fluence rates were comparable to those reported for maize. Compared with oats and maize, however, curvature responses in rice were much smaller and coleoptiles straightened faster after establishing the maximal curvature. When stimulated continuously, submerged coleoptiles developed curvature slowly over a period of 6 h, whereas air-grown coleoptiles, which showed smaller phototropic responsiveness, established a photogravitropic equilibrium from about 4 h of stimulation. The plot of the equilibrium angle against log fluence rates yielded a bell-shaped optimum curve that spanned over a relatively wide fluence-rate range; a maximal curvature of 25° occurred at a fluence rate of 1 μmol · m−2 · s−1. This optimum curve apparently reflects the light sensitivity of the steady-state phototropic response. Received: 28 June 1996 / Accepted: 30 July 1996  相似文献   

13.
Genetic variability within and among four Spanish natural populations of Salmo trutta L. was evaluated on the basis of 25 enzyme loci, 3 microsatellite loci, and 9 randomly amplified polymorphic DNAs (RAPDs). A total of 21 allelic markers were found, 12 of which were reported by microsatellites, whereas enzyme and RAPD accounted only for 6 and 3, respectively. Genetic variation within samples was significantly higher for microsatellites and RAPD than for enzyme loci. Although all methods reported a high degree of allelic heterogeneity among samples, also revealing a high degree of gene diversity, genetic relationships depicted by UPGMA dendrograms closely agreed for all kinds of data. Microsatellite loci appeared to be the most feasible technique when searching for specific alleles for a population or an area, owing to the higher number of allelic variants found. Received July 1, 1998; accepted January 14, 1999  相似文献   

14.
15.
The mode of action of NaCl in terms of cell proliferation and cell death was examined in seminal roots of rice plants (Oryza sativa L.). Salt/sodium chloride was inhibitory to cell number increase and to cell death in cortical tissue, whereas final cortical cell size was the same as in control roots that were not exposed to NaCl. It seems that NaCl may stimulate the transition phase from cell division to cell elongation. Further analysis of the role of NaCl in the suppression of cortical cell death was confined to a delay in the early stage of cell collapse, which was caused by tonoplast disruption, and plasma-membrane destruction. Sodium chloride did not have any effect on the cell-to-cell movement of macromolecules in the root cortex. In-situ hybridization studies indicated that expression of the gene for tonoplast intrinsic protein (rTip1) was localized predominantly in the epidermal and exodermal cells as well as in metaxylem cells in seminal roots. Upon NaCl treatment, the intensity of rTip1 gene expression was raised in the cortical parenchyma, suggesting that salt plays a role in the rapid onset of cell elongation. Received: 2 April 1998 / Accepted: 18 September 1998  相似文献   

16.
The impact of ozone on crops was more studied in C (3) than in C (4) species. In C (3) plants, ozone is known to induce a photosynthesis impairment that can result in significant depressions in biomass and crop yields. To investigate the impact of O (3) on C (4) plant species, maize seedlings ( ZEA MAYS L. cv. Chambord) were exposed to 5 atmospheres in open-top chambers: non-filtered air (NF, 48 nL L (-1) O (3)) and NF supplied with 20 (+ 20), 40 (+ 40), 60 (+ 60), and 80 (+ 80) nL L (-1) ozone. An unchambered plot was also available. Leaf area, vegetative biomass, and leaf dry mass per unit leaf area (LMA) were evaluated 33 days after seedling emergence in OTCs. At the same time, photosynthetic pigments as well as carboxylase (PEPc and Rubisco) activities and amounts were also examined in the 5th leaf. Ozone enhanced visible symptoms characterizing foliar senescence. Across NF, + 20, + 40, and + 60 atmospheres, both chlorophylls and carotenoids were found to be linearly decreased against increasing AOT40 ( CA. - 50 % in + 60). No supplementary decrease was observed between + 60 and + 80. Total above-ground biomass was reduced by 26 % in + 80 atmosphere; leaf dry matter being more depressed by ozone than leaf area. In some cases, LMA index was consistent to reflect low negative effects caused by a moderate increase in ozone concentration. PEPc and Rubisco were less sensitive to ozone than pigments: only the two highest external ozone doses reduced their activities by about 20 - 30 %. These changes might be connected to losses in PEPc and Rubisco proteins that were decreased by about one-third. The underlying mechanisms for these results were discussed with special reference to C (3) species. To conclude, we showed that both light and dark reactions of C (4) photosynthesis can be impaired by realistic ozone doses.  相似文献   

17.
18.
The ontogenetic and seasonal development of wax composition and cuticular transpiration of sun and shade leaves of ivy (Hedera helix L.) was analysed by investigating leaves varying in age between 4 and 202 d. It was discovered that the total amount of solvent-extractable wax was composed of two distinct fractions, separable by column chromatography: (i) a less polar or apolar monomeric wax fraction consisting of the typical linear, long-chain aliphatics usually described as cuticular wax components and (ii) a polar, oligomeric wax fraction consisting of primary alcohols and acids mostly esterified to C12-, C14- and C16-ω-hydroxyfatty acids. The apolar wax fraction, which could be analysed directly by gas chromatography coupled with mass spectrometry (GC-MS), exhibited pronounced seasonal changes in composition. Wax amounts in the apolar fraction reached a maximum after about 30 d and gradually decreased again during the remaining period of the season investigated. In contrast, the polar wax fraction, which was analysable by GC-MS only after transesterification, rapidly increased early in the season, reaching a plateau after 40 d, and then remained constant during the rest of the season. Thus, total amounts of solvent-extractable cuticular waxes, which can be determined gravimetrically, will only be detected by GC-MS after fractionation and transesterification, a methodological approach rarely applied in the past in cuticular wax analysis. Additionally, investigation of the cutin polymer matrix after depolymerisation through transesterification, revealed that only those primary alcohols and acids forming an essential part of the apolar and the polar wax fractions were esterified during the investigated season and incorporated in increasing amounts into the cutin polymer matrix (matrix-bound wax fraction). Thus, it can be concluded that a complete analysis of cuticular wax of ivy and its seasonal development can only be achieved if all the relevant fractions (i) the less polar or apolar, (ii) the polar and (iii) the wax fraction bound to the cutin polymer matrix are investigated. Cuticular transpiration rapidly decreased within the first 30 d and essentially remained constant during the rest of the season. Thus, changes in cuticular water permeability were closely correlated with the most prominent changes in wax amounts and composition occurring during the first 30 d of ontogenetic leaf development. However, during the remainder of the year, up to 202 d, cuticular transport properties remained constant, although significant quantitative and qualitative changes in cuticular wax composition continued to occur. Thus, our study clearly demonstrated that there will be no simple relationship between chemical composition of cuticular waxes and transport properties of isolated ivy leaf cuticles. Received: 2 March 1998 / Accepted: 26 June 1998  相似文献   

19.
In this study, effect of different forms of sulfur-containing agrochemicals on growth, yield, and protein content of soybean grains have been evaluated. Three forms were used, such as powdery, solute, and pasty, in which elemental sulfur is contained in a nanostructured state. Plants treated with powdered and solute sulfur-containing agrochemicals had the highest growth and grain yield values, and the effect of applying pasty sulfur-containing agrochemicals did not differ from the control, in which there was low yield on all variants. The use of powdered and solute sulfur-containing agrochemicals increased all protein fractions in soybeans. The results show that the use of powdered and solute sulfur-containing agrochemicals is necessary to boost the yield of soy and increase the supply of proteins in the grains. A key factor in the availability of sulfur for soybean plants is the conversion of sulfur to a nanodisperse state. This study provides relevant information about sulfur-containing agrochemicals, which can promote higher seed yields and increase the content of protein in soybeans.  相似文献   

20.
The interacting effects of temperature and pH on the kinetics of glutathione reductase from maize have been studied in detail. The apparent Km for oxidized glutathione (GSSG) measured with desalted crude extracts increased in an exponential manner with rising temperature as a single variable. Increasing pH as a single variable also resulted in higher values of apparent Km for GSSG. When pH was allowed to vary with temperature, a curve which combined the pH and temperature responses was observed. Temperature had the stronger influence and this combined curve was displaced from the temperature curve due to the effect of pH. The pH to which the assay buffer was adjusted at 30°C had an influence on the pattern of the results in this type of experiment. The response of apparent Km for NADPH, and of apparent Km for GSSG using partially-purified extracts, were also examined. The variation with temperature, at constant pH, was again exponential. The pattern of change of apparent Km with temperature is strongly dependent on experimental conditions. Affinity/temperature relationships deduced from such data would only reflect enzyme function in vivo if the physiological environment could be reproduced exactly in the assay mixture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号